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Abstract

We have identified a class of whole-program transformations that are regular in
structure and require changing the types of terms throughout a program while simulta-
neously preserving the initial semantics after transformation. This class of transforma-
tions cannot be safely performed with typical term rewriting techniques, which do not
allow for changing the types of terms.

In this paper, we present a formalization of type-and-transform systems, an auto-
mated approach to the whole-program transformation of terms of one type to terms
of a different, isomorphic type using type-changing rewrite rules. A type-and-trans-
form system defines typing and semantics relations between all corresponding source
and target subprograms such that a complete transformation guarantees that the whole
programs have equivalent types and semantics. We describe the type-and-transform
system for the lambda calculus with let-polymorphism and general recursion, includ-
ing several examples from the literature and properties of the system.

Keywords: automatic program transformation, type-changing rewriting,
semantics-preserving program transformation, type-and-transform systems

1. Introduction

Program improvement sometimes involves large, homogeneous changes that are
not intended to modify program functionality (other than, perhaps, performance). For
example, a programmer might rename variables, reorganize code, or update code to use
a new library API. Of course, these changes can still introduce unwanted errors into a
program. Consequently, programmers often use tools to help automate common pat-
terns of change such as refactoring [8]. Compilers or interpreters may also be employed
for large changes such as optimization without necessitating programmer intervention.
In functional programming, term rewriting [1] can be used to safely change programs
with simple rewrite rules.
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Many approaches to automated semantics-preserving program improvement only
allow type-preserving updates to code. This is only natural: in a statically typed pro-
gramming language, type safety is a prerequisite for a working program. Replacing one
term with another of a different type challenges the effort of guaranteeing the preserva-
tion of semantics between the terms. Some type-changing rewrites may be straightfor-
ward: adding a parameter to a function, for example. Other changes are not obvious:
changing one string type to a different string type, in which the APIs of the two types
are not equivalent. A completely transformed program should work as before, i.e. the
strings are still strings. However, the evaluation may now be more efficient. Or, for
example, the program now supports Unicode characters whereas before the encoding
was ASCII. Our focus is the class of transformations between isomorphic types with
possibly different APIs.

In this paper, we discuss a foundation for certain automated semantics-preserving
and type-changing program transformations. We use purely functional programming
languages with strong, static type systems. Such languages allow us to utilize the type
system for safety as well as driving change throughout the program. By disallowing
or isolating side effects, such languages also simplify the proof of semantics preserva-
tion. Our object language is the lambda calculus with let-polymorphism and general
recursion.

A type-and-transform system defines, for a given language, how to relate two pro-
grams such that all “unresolved” term and type changes are identified and can (even-
tually) be resolved resulting in the programs being semantically equivalent. A type-
and-transform system specifies the structure of a transformation' that relates one typed
program (the source) to another (the target). A target is actually the possibly modified
source. A type-and-transform system also specifies how a program can be modified
with a typed rewrite rule, an extension of the usual term rewrite rule that can, under
certain conditions, impose a change of type between its left-hand side (lhs) and right-
hand side (rhs) patterns.

A transformation reflects the structure of the source term, preserving both the syn-
tactic relation of corresponding subterms in the source and target and the typing relation
of those subterms. A transformation also records all rewritings to the target by an asso-
ciated set of typed rewrite rules. A complete transformation? is a transformation with
the same source and target types and equivalent semantics, even though the programs
may differ syntactically.

Figure 1 provides a visualization of the connections between transformation and
rewriting. The diagram is split vertically to position the parts relevant to the source
program on the left and the target program on the right. A program such as e;: T,
represents the term e — in this case, the source term — with its type 7,;. Transformations
are horizontal, indicating the relation between source and target, and use an ~> arrow.
Applying a typed rewrite rule is a vertical step from one transformation to another with

'With apologies for the abuse of terminology, we have borrowed the terms “transformation” and
“rewrite,” among others, and given them specific meanings that differ from those in other contexts.

2This is not related to “completeness” but rather to a subset of transformations obeying certain properties
described in Section 6.



Source Target
transformation
€y Ty "AAAAAANNANANANS €] T
rewriting

€y Ty "AAAANANANANNANNANS €L Ty

Figure 1: Diagram of the relationship between transformation and rewriting

an ~» arrow.> With typed rewriting, the target term and type can change; however, the
transformations “before” and “after” rewriting must each preserve a relation between
its respective target and the same source. It is in this sense that typed rewriting relates
two transformations rather than two terms, as is typical for term rewriting. In future
sections, we will revisit the diagrammatic technique of Figure 1 to help elucidate the
relationships between the components of transformation and rewriting.

The associated set of typed rewrite rules describes all the allowed term and type
changes for a transformation. We use two metavariables, 4 and R, to indicate the
abstraction and representation types, respectively, which are the only types that can be
changed. The basic conversion between these types is given by the functions rep: 42—
R and abs: R — 4.4

In this paper, we focus on types 4 and X that are isomorphic. That is, both of the
following equivalences hold:

repoabs = idg 5 (REP-ABS)

absorep =idg_.4 (ABS-REP)

This simplifies the proof of semantics, but it also means many type pairs are not sup-
ported.

As an aside, we believe that the isomorphism requirement can be weakened to a
retract — that is, only (aBs-rep) would be necessary. A retract would allow transfor-
mations between, for example, the types A4 = String and R = String — String, which
do not have an isomorphism (see Section 1.1 for why). One of the authors has al-
ready shown the retract requirement to some extent. In a master’s thesis, Schuur [29]
demonstrated a type-and-transform system for the simply typed lambda calculus using
a logical relation as proof technique. There is a precedence [27] for using logical re-
lations for more interesting languages such as ours, which has general recursion and
polymorphism. We will explore this in future work, but we feel that this paper stands
well on its own as an introduction to and foundation for type-and-transform systems.

1.1. An Application of Type-and-Transform Systems

To motivate type-and-transform systems, we present an application that will serve
as a running example. Pat, the programmer, will be our guide through various scenar-

3The intuition behind the arrows is that, where rewriting is a change or a “bump in the road” (~»), a
transformation may include a sequence of rewrites or multiple bumps (~-).
YWe adopted the use of 4/abs and K /rep from Hughes [17].



ios describing problems and our solutions. For code examples, we use a Haskell-like
language.

Scenario. Pat writes a program using type A. The operations involving A (A-terms)
are convenient for programming, but programming with A can produce inefficient pro-
grams, and Pat discovers the program has this problem. Fortunately for Pat, another
type B is isomorphic to A and more efficient but not as convenient (e.g. the set of B-
terms is smaller or the code is more verbose). Unfortunately, replacing A-terms with
B-terms or inserting conversions at all the right places is time-consuming and error-
prone.

Pat can attempt to solve the problem using a type-and-transform system to auto-
matically transform the program with one of two potential approaches:

1. Pat uses a compiler flag. The compiler “knows” about the A-to-B transforma-
tion and converts A-terms to B-terms, safely and completely. In the meantime,
Pat will continue to utilize A-terms, comfortable in the knowledge that the com-
piler will optimize> them to B-terms.

2. Pat uses an IDE component. After the operation — which could be considered a
form of refactoring — Pat uses the newly transformed code with B-terms instead
of A-terms.

Typical Examples. The canonical example is transforming lists to an alternative repre-
sentation (sometimes called difference lists) as first-class functions on lists [17]. In a
similar vein, cons-lists can be replaced by join-lists [32, 38] or finger trees [16]. There
are also multiple string types, each with a different application: people in the Haskell
community often encounter problems using String (a synonym for [Char]) when they
should be using ByteString [3] or Text [14].

Example: Difference Strings. Substantial use of the standard Haskell “append” oper-
ation 4 on lists can be problematic since left-bracketed applications such as (xs 4
¥s) 4 zs are inefficient: the structure of xs is effectively traversed twice during eval-
uation. Even though - is right-associative, we cannot easily guarantee that 4 is al-
ways used in a right-bracketed way, especially when abstraction is used, as in let as =
xs 4 ys in as H-zs.

We present a “difference strings” library in Figure 2. Using this library, we would
write the example ex; = (xs 4 ys) 4 zs as (rep xs o rep ys) ¢ rep zs, which reduces to
Z (Aas.xs4+ys+zs4+as). To that, we apply abs to get xs -+ ys+zs+"", a term equiv-
alent (by the associative and unit properties of ) to ex; but without the unnecessary
extra work involved in the left-bracketed - chain.

This library is an adaptation of Hughes [17] with two modifications. First, we spe-
cialize to lists of characters (i.e. String). This allows us to simplify the initial presenta-
tion of type-and-transform systems. We extend the language with parameterized type

3To clarify, transformation does not guarantee improvement, but it does expedite comparing transformed
and untransformed programs.



rep::S—Z (0)Z—Z—Z

type S = String rep xs = Z (xs+) ZfoZg=Z(fog)
newtype Z =Z (S —5) abs::Z—S €:Z
abs (Zf)=f"" e=Zid

Figure 2: Difference strings library

constructors in Section 8 and discuss difference lists in Section 8.1. Second, we use a
Haskell newtype Z for the difference string type, and we assume that the constructor
is not visible outside the library (i.e. Z is an abstract type). Without this approach,
we do not have an isomorphism. Note, for example, that (rep o abs) (Z (Ax."a")) =
Z ("a"+4) but (Ax."a") # ("a"+4). There is no corresponding String value for every
String — String function, so we cannot allow arbitrary functions in Z values.

With a type-and-transform system, we can automatically transform string code to
difference string code. Not only can (xs - ys) 4 zs be transformed to abs ((rep xs o
rep ys) o rep zs), but transformation can be “pushed” through bindings. The example
let as = xs + ys in as # zs can be transformed to abs (let as = rep xsorep ys in as o
rep zs). Note that the type of as is changed by the transformation: from String to
String — String. The feature of bound variables with changing types is an important
motivation for using a type-and-transform system instead of a term rewriting system.

For a larger example, we adopt the reverse function from Hughes [17]:

reverse::S— S
reverse "" =nn
reverse (x:xs) = reverse xs+ (x:"")

There are many potential transformations of reverse. Here are two:°

reverse; ::S—Z
reverse; "" =€
reversey (x:xs) = reversey xsorep (x:"")

reversey .. S — S
reversez nn o nn
reversey (x:xs) = abs (rep (reversey xs)orep (x:""))

We prefer reverse; over reverse; because (1) it has fewer uses of abs and rep and (2)
it allows us to “propagate” the type Z further throughout the program by changing
the type of reverse everywhere it is used. Even if there is only one use of reverse, the
transformation would need to add only one use of abs, as in abs (reverse e). We discuss
the choice of one transformation over others in Section 7.2.

The above transformations are expressed using typed rewrite rules, which can be
very simple and yet quite expressive. With one typed rewrite rule — e.g. rewrite 4 to

These functions are named for reference. The transformation does not actually rename functions.



© — we describe a minimal change that is powerful because the types of the lhs and
rhs are different. Term rewrite rules, by contrast, only include patterns with the same
types —e.g. rewrite xs 4+ ys to abs (rep xs++ rep ys). For exj, this rewrite would produce
a result, abs (rep (abs (rep xsorep ys)) o rep zs), that is rather more verbose than the
aforementioned transformation of ex;. (Of course, we can apply other rules to rewrite
the term again, but that is unnecessary in type-and-transform systems.) Also, just the
one typed rewrite rule allows us to transform map (4) to map (¢) without mentioning
map: type-and-transform systems take advantage of polymorphism and higher-order
functions to propagate change.

As a programming abstraction, the difference string representation is clearly not
as convenient as the string representation: it requires inserting abs and rep at strategic
points. Optimization may not be a concern early in the development cycle, and the sim-
plicity of strings can be a strong motivating factor. But later, inefficiency can become
a significant problem, and automatic transformation to difference strings becomes very
useful.

1.2. Contributions

The contributions of this paper are the following:

* We describe the type-and-transform system for the lambda calculus with let-
polymorphism and general recursion. We also extend the language to include
parameterized type constructors.

* We establish and prove the properties necessary for preserving type safety and
semantics through type-changing rewriting.

* We provide several examples demonstrating the application of type-and-trans-
form systems.

We have developed a Haskell implementation [20] of the transformation algorithm for
experimentation. But the primary focus of this paper is on formalization, and we only
summarize the algorithm and practical considerations. Our ultimate goal is to extend
the theory to Haskell, implement full support for the language, and investigate the real-
world effectiveness of type-and-transform systems.

This article is an update of another paper published with the same name [22]. We
have made a number of changes since that first paper. All previously omitted proofs
have been included, and we give a detailed discussion of them. The diagrams have
been improved, and new examples were added to visualize the relationship between
transformation and rewriting. Finally, we expanded the analysis on the nuances of
typed rewriting and incorporated an example of a transformation derivation tree.

1.3. Overview

The remainder of this paper is organized as follows. We begin in Section 2 with
a discussion of the basic object language type system and semantics. In Section 3,
we look at a few example transformations to develop an intuitive understanding. We
dive into type-and-transform systems by introducing the typing in Section 4 and the
semantics in Section 5. In Section 6, we present the formal definitions and correctness



Terms ef i==x|fe]| Axe | fixe | letx=¢;ine;
Types T,LOo=a|B|t—0

Type Schemes ¢ == V&.T

Environments I' :=¢ | I,v:g

Variables v =x|m

Figure 3: Object language syntax

proofs of the important concepts. Section 7 includes brief discussions of the transfor-
mation algorithm and practical aspects. We extend the language with parameterized
type constructors in Section 8 and use that extension for a difference list transforma-
tion. In Section 9, we describe two more applications of type-and-transform systems.
Finally, we examine related work in Section 10 and conclude with our future plans in
Section 11.

2. Lambda Calculus with General Recursion and let-Polymorphism

Our object language is the lambda calculus with general recursion (a fix primitive)
and polymorphic let-bindings with the Damas-Hindley-Milner type system [25, 5]. It
is a small language but interesting enough for useful examples.

Figure 3 gives the grammar for the language. The term syntax is standard. For
readability, we borrow features from Haskell such as infix binary operators and list
notation, but all examples can easily be translated to the core language.

A type 7 is either a type variable o, a base type B (e.g. integer or string), or a
function type. We use ¢/ as a shortcut for either a type variable or a base type later in
the paper. A type scheme ¢ quantifies over a vector & of type variables in a type. If &
is empty, we write the type scheme as a type.

A type environment is a finite map from variables to type schemes. A variable is
either an object variable x and or a syntactically distinct metavariable m. Metavariables
appear only in rewrite rules for pattern matching on object terms (Section 4.2). A type
environment is either empty or the union of an environment I" with {v: ¢}, where v
does not occur free in I'. We use o-renaming where necessary to avoid shadowing.
The notation ¢ = I'(x) indicates that x: ¢ € I.

A type substitution’ & is a finite map from type variables to types. A substitution
that replaces o, . . ., 0, with 7;,..., 7, is written as [0 — T/, ..., &, — T,]. The empty
substitution is written as id, and the composition of two substitutions o7 and o3 is
o1 0 0. We indicate the application of a substitution o to a type T by juxtaposition:
o'7. Substitution uses o¢-renaming where necessary to avoid capture.

Instantiation and generalization are defined as follows:

* A type 7 is an instance of a type scheme ¢ = V&.7’ if there exists a substitution
o, whose domain is a subset of @, such that T = o7’. We write instantiation as

7We later use forms of substitution for mapping things other than types, but the notation remains the
same.



7 <T(x) 'te:t—1
———= (VAR) ——————— (FIX)
I'kFx:7 I'Hfixe:t
I'Ff:t—v I'kFe:t
(APP)
I'Hfe:v
Ix:tke:v
(LAM)

I'kFAxe:T—0
F"E]t’l,’ F7x:g[‘(f)|—€221)
I'Fletx=¢;ine;: v

(LET)

Figure 4: Object language type system
T<G.

* The closure Gr(7) of the type T under the environment I is defined as (where
fv(x) means the free variables of x):

Gr(t) =Va.t where & = fv(t) \ ()

The typing judgment I' - e: T says that the term e, closed by the type environment
I, has the type 7. The inference rules are given in Figure 4.
For the language semantics, we use the following equivalences:

(Ax.ex) e; =[x ej]ez (RED-LAM)
letx=e¢;ine; =[x efle; (RED-LET)
Axfx=f wherex¢f(f) (RED-ETA)

fix (gof) =g (fix (fog)) (RED-ROLLING)

The first three® are reduction rules for a call-by-name semantics. The last equivalence,
(RED-ROLLING), is the rolling rule, discussed in Section 6, for the least fixed point.

3. A Brief Look at Transformation

In this section, we look at a few transformations in our object language® to expand
on the description of the running example in Section 1.1 and to develop an intuitive
understanding of transformation.

The simplest transformation is one that relates a typed term to itself. That is, trans-
formation is reflexive.

8Not all of these rules are used in the main text. See also the proofs in Appendix A and Appendix B.
9For simplicity, we consider any datatypes or newtypes defined in Haskell code to be base types in the
object language.



Table 1: Examples of transformations

Source Target

"a":§ rep "a":Z (1)
H+:S—=S—=S 0 L—Z—7Z (2)
xH"b":S xorep "b":Z 3)
(Ax.x+4"b") "a":S§ abs ((Ax.xorep "b") (rep "a")):S )
(Ax.x+"b") "a":S abs ((Ax.repxorep "b") "a"):S (5)
(Axx4"b") "a":S (Ax.abs (rep xorep "b")) "a": S (6)

Consider the example transformations in Table 1. The first two involve a single
rewrite rule. In (1), a string is rewritten to a difference string by applying rep to the
string. The transformation of (2) is a simple renaming operation. Each of these changes
the type of the term, but note that the type changes have a regular pattern. Every §
becomes a Z, and the type function structure is preserved, i.e. the number of arrows
and the relationships between them are the same in the source and target.

At this point, the reader might try finding a combination of abs and rep (and (Rep-
ETa)) for each example that changes the target to be semantically equivalent to the
source. For example, (1) and (2) can have their targets rewritten such that the following
equations hold:

"a" = abs (rep "a")
H+ =Ax.Ay.abs (repxorepy)

Developing this intuition will help with understanding later concepts.

In (3), the free variable x in the source has type S, but the x in the target has type Z.
A transformation allows free variables to have different types in the source and target
by relating the type environments. The environments must have the same variable
domains.

Multiple transformations can have the same source but different targets, as demon-
strated by (4), (5), and (6). The relation is left-total (a.k.a. a multivalued function) be-
cause the identity transformation is always allowed. We discuss the practical problem
of choosing a preferred transformation in Section 7.2.

A transformation relates a source e to a target e, but not necessarily the source e,
to the target e;. That is, the relation is not symmetric. For example, abs and rep are
only introduced and never eliminated; so, we cannot define a transformation relating a
changed target to a source.

Examples (4), (5), and (6) are complete transformations, and the source and target
have equal types. Complete transformations allow the target to be substituted for the
source. Incomplete transformations such as (1), (2), and (3) can be subtransformations
(i.e. transformations of subterms) of complete transformations, but they are not com-
plete themselves.

In the next section, we describe the typing infrastructure for rewriting and transfor-
mation.



T(t,v)=let (c,7)=T'(7,0)int

T'(Bs,  Bi) = (id,By) if By = B,
T'(7, ) = ([ar1],7)

7' (e, V) = ([ v],v)

T’(T] — T2, 0] — 1)2) =let (G] , f/) = 'T/(‘L'/7 1.)1)

(02,%2) = T'(0172,0102)
in (62 0(7170'21'0/ *)fz)
T (4, R) = (id,1)

Figure 5: Definition of 7" and 77 on types
4. The Typing of Type-and-Transform Systems

A key feature of type-and-transform systems is the support for transformations that
allow for type-changing rewrites but enforce the discipline of type safety. We discuss
the balance in this section by first describing type functors, a basic but important under-
lying concept in type-and-transform systems. Then, we present typed rewrite rules and
transformations, especially the type-related aspects. We discuss the semantics-related
aspects in Section 5.

4.1. Type Functors

The types of the two terms in a transformation are related by a type functor, which
has the following syntax:

Tovs=a|B|T—-0 |1

A type functor indicates the difference between two types (which we call 4 and R)
with the distinguished element 1. In the running example, wherever S (A2) is found in
the source type and Z () is found in the target type, the type functor has 1. Otherwise,
the type functor mirrors the common structure of the two types.

The type functor 7 of a transformation from source type 7, to a target type 7; is given
by T (1, 7;), defined in Figure 5'°. The definition of 7 uses 7. The first component of
T’(t,v) is the most general unifier, (7, v), if it exists. That is, if 6 =U(7,v), then
(6,%) = T'(7,v), and 7 is syntactically equal to 67 and 6v. The more interesting
case occurs where U(7, ) is not defined but (o, 7) = 7'(7,v) is defined. In that case,
an 1 is found at every position in 7 where 4 occurs at the corresponding position in 0T
and R occurs at the corresponding position in G V.

The type projection of a type functor 7 is 7(v), where every 1 in 7 is replaced by
11

v:
*/B(v) = /8

(T—=0)(v) = 7(v) = B(v)
1{v)y="v

10Figure 5 is simplified for clarity. The types 4 and ® are implicit parameters and, to be more general,
should not be patterns but checked for unification, i.e. with U(7, 2).

"Note that _(t) is surjective but not injective. For example, 1(S) = S(S). This property will be important
later.

10



Given the definitions of 7 and _(_), we can state, for any 7, the following inversion
property:

T

T(f<ﬂ>>f<9(>) (T-INV)

To prove this, we first show that (id, T) = T'(£(4),%(R)). The proof is by straightfor-
ward induction on the structure of the type functor . Note that the substitutions in the
proof are all id. This is because the types are equivalent except when 7 is 1. In that
case, T'(2(4),T(R)) =T (1(2),1(R)) =T'(4,R) = (id,1) = (id, ©).

To close transformations where free variables can change types, we use a type func-
tor environment ', a slight adaptation of a type environment that maps variables to type
functor schemes:

o

xig

o o
;
o o

= €
= Va.

Instantiation (<) and generalization (G) work as expected. T can also be lifted to type
functor schemes and environments:

Ti(61,62) = Gp(T (11, 72)) where 7, < ¢/, T2 < ¢
T(e ,E )=¢
T((Fh\/] : g/), (F27v2 : gz)) =letl = T(Fl,rz) inl) v, Z7I°—(§],g2) ifvi=w,

We can likewise define lifted versions of _(_):

&(v)p = Gp(£(v)) where £ < ¢

= 7}‘(g<’q>1‘7 G('R.)r) (¢-INV)
T(I(a),1(R)) (-Ny)

From example (3) of Table 1, we infer the source and target type environments to be
[y={x:S,...} and Iy = {x:Z,...}, respectively. Thus, the type functor environment
of the transformation is 7 (I'y,I') = {x:1,... }.

The inversion properties establish the source and target types and environments of
a transformation. These are necessary for the typing of transformations as formalized
by Theorem 1 in Section 6.

In the next section, we look at the other important component of the system, rewrit-
ing, and how type functors play a role there.

4.2. Typed Rewrite Rules

The typed rewrite rule is the basic unit of change. In standard term rewriting sys-
tems, the rule appears as a pair of expression patterns, p; ~ p,, where p; is the lhs, p,
is the rhs, and p has the following syntax:

11



T<I(v) I'kpr:t—v I'kpr:T
——— (P-VAR) (P-APpP)
I'tv:t I'kpip2:v
I'kp 'R

FUT(R) b pr: (%) WERTFP o)
TUT(R) Fp,:T(R) 'R

Ha) =1

=g

k(> 1T~ Pty

<

Figure 6: Pattern (p), rule (p), and rule set (R) typing

p =V | pip2

A pattern is either a variable or the application of two patterns. Object variables (x),
which are syntactically distinct from metavariables (m), are constant symbols. A term
e is an instance of p if a substitution 6 (mapping metavariables to terms) exists such
that Op = e. A redex is an instance of the lhs, Op;, and contracting the redex means
replacing it with the corresponding instance of the rhs, 0p,..

In type-and-transform systems, we extend a rewrite rule p by annotating patterns
with type functors and annotating the rule itself with a type functor environment for
the metavariables in the patterns:

p = Topt~p

We use R to denote a finite set of typed rewrite rules.
Consider the following typed rewrite rule set for our running example:

{m:S}>m:S ~repm:1l (SZ-1)
{m:1}pm:1 ~>absm:S (SZ-2)
E>PH:S>5—=>S~o 11 (SZ-3)

There is a simple intuition behind the type functors in the above rules: if a pattern or
metavariable would have type Z (the representation type) under normal typing rules,
that type is replaced with the “placeholder” 1.

One can view the use of 1 as a “viral infection” that spreads throughout the program
via rewriting. First, the infection is introduced by rewriting with (Sz-1), which has 1
only in a basic (non-function) target type. Next, the infection is transmitted to other
parts of the program by (Sz-3). Its target has a function type that has 1 in both argument
and result positions. Finally, we eliminate the infection with (SZ-2), which has 1 only
in a non-function source type and not in the target type.

12



Ty = Tol<ﬂ> ANAANNANS T = T°1<K>

Ty = Tor<ﬂ> AN T = Tor<R>

Figure 7: Diagram relating types to type functors for rewriting

Figure 6 presents typing rules for patterns, rewrite rules, and rule sets. The typing
of patterns with I' F p: 7 is standard, though it is worth noting that object variables
(i.e. constants) and metavariables are treated equally in (P-Var). The typing of a rule
set R with I' - R is also straightforward: a rule set is well-typed if all of its rules are
well-typed. However, the typing of a rule p with I' - p needs some explanation.

The premises of the inference rule (RR) effectively define two conditions for typing
rewrite rules. The first condition is that each pattern must be typed with its target
type under the target type environment. Alternatively stated, a pattern p; has the target
type 7, which is equivalent to 7;(®R) (the type functor % with 1 substituted for the
representation type ). Note that the type functor environment I of a rule closes only
over the metavariables of the patterns; the object variables must be bound in the type
environment I'. The second condition is that the lhs and rhs source types must be
equivalent:'?

7(4) = 1.(4) (£-REW)

To understand (#-rew), recall the relationships between the terms and types of rewriting
and transformation as depicted in Figure 1. We adapt that diagram in Figure 7 to
show only the types and their equivalent type functor projections. Note how the type
functors 7; and 7, are associated with the before and after transformations (recalling
the inversion property (¢-inv)). But the source types of each transformation must be
equivalent; therefore, a typed rewrite rule must have the (£-rRew) property.

The conditions for typing a rewrite rule ensure that the rule will preserve the typing
of a transformation, which we describe in detail in the next section. Before continuing,
however, the reader may wish to prove that each of the rules (Sz-1), (SZ-2), and (SZ-3)
is well-typed according to I' - p using an appropriate I" derived from Figure 2.

4.3. Transformation

A transformation is given by a derivation of the following judgment:
Frele: 2

The relation can be interpreted as: given a type functor environment I and a typed
rewrite rule set R, a source e transforms to a target ¢’ with the type functor 7.

The inference rules for the transformation judgment are given in Figure 8. Most of
the rules correspond directly to typing rules in Figure 4. They enforce the structural

12This is where the aforementioned non-injectivity of _(t) is important.
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<T(x) Fhele:t—t
(T-VAR) = — (TFix)
I'Hfixe~fixe': 7

, . Ry
e:t—=1T  They~éy:t

(T-APP)

o

o R
Ihejey~ees: v
] o R
Ix:the~e:

0]
o R .
I'Ax.e~Ax.e :t—1

o R . o , R,
Ikej~ei:t Tox:Gu(f)Fex~eh: v

(T-LET)
=l N R N o
I'Fletx=e;ine;~letx =¢)ines: ¥

o o

Frefe: g Cuopti~peit)eR L,k elp@ed = 0
Irelop,: 2

(T-REW)

Figure 8: Transformation

mirroring of the source and target as well as the typing of the terms. Type functors and

type functor environments are treated simply as types and type environments. The one

exception to the typing correspondence rule is (T-Rew) for type-changing rewriting.
We would prefer to have a simple formulation of type-changing rewriting such as:

Frefop: 4 Cpopifi~prit)eR
f“#eliep,:f,

Given a typed rewrite rule from the rule set R and a transformation whose target term is
the instance of the lhs pattern p; for some substitution 6, we can derive a transformation
whose target term is the instance of the rhs pattern for the same substitution. However,
this inference rule has a problem. Consider one of the example typed rewrite rules we
have seen, (SZ-1):

{m:S}pm:S~repm:1
In an untyped term rewriting system, this would be:
m~»rep m

This rewrite rule does not seem very useful because it can be applied to every term.
But in type-and-transform systems, (SZ-1) is useful in a very practical sense because it
allows us to apply the rep conversion to as many subterms as possible, increasing the
probability of having a useful transformation. Of course, we need to restrict rewriting to
preserve typing (and later semantics) when this rule is applied. Upon closer inspection

14



f;f‘m H elz-»p@e' =0

Fhele: ¢ £ < T(m)
. s = (M-VAR) S = (M-MVAR)
I, Fx~x@x = id LT, Fewm@e = [ms €]
lo";lo"mke]@pj@elléel lL;l&,nFeg«ﬁpz@e'ZéGZ
(M-APP)

ke e op) pr@é) ey = 6,00,

Figure 9: Typed pattern matching

of our simple formulation, we see that the substitution here is, in fact, only partially
typed. We are not checking that the type of each metavariable is an instance of the type
of the subterm it matches. This leaves us with ill-typed terms for some rewrite rule
applications.

Rather than relinquish the useful typed rewrite rules, we define a typed pattern
matching that gives us well-typed rewriting during transformation:

f;l&ml—e&p@e’ée

The interpretation is that, given an object variable environment I and a metavariable
environment'® T, a pattern p matches a target ¢ and produces a substitution 6 such
that Op = ¢’ (see Lemma 1). Of the inference rules shown in Figure 9, (M-var) and
(M-Arp) are straightforward structural rules. In (M-MVar), we see why the source e
is needed in the judgment. When a metavariable pattern is found, the corresponding
source and target terms must be components of a transformation whose type functor %
is an instance of the metavariable type functor I, (m). This ensures that the redex is
well-typed.

Returning to the inference rule (T-Rew), it says that if we have a well-typed redex
Op; from typed pattern matching along with a transformation with that redex as the
target term, then we have a transformation with the contraction Op, as the target. Also,
the transformation above the line has the type functor %, and the transformation below
the line has 7,.

For another illustration of (T-Rew), see Figure 10, which is the diagram of Figure 7
extended with the terms of rewriting. Assume we have the typed rewrite rule I >
pi: &~ pr: . If we have a transformation " e, <5 0p; : & (where the rule (M-MVaR)
necessarily holds), we can apply the rewrite rule. The result is the transformation
Ik e, X Op,: T.. As before, the (¢-rEw) property, T;(A4) = %.(A4), holds if we have a
well-typed rewrite rule.

To conclude our introduction to transformation typing, we describe the transforma-
tion derivation of example (3) from Table 1:

13This m is an indicator of the environment kind. It is not a metavariable.
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e T{A) ~~rrnns Opp B(R)

es: T {A) ~~~rnns Op, i T (R)

Figure 10: Diagram of rewriting with Iy, > p;: & ~ p,: £
Iy x4 "b" «7/2~>x<>rep "b":1
Here, I'j = {x:1,"b":S,abs: Z—S,rep:S—Z,Z:(S—8) = Z,(4#):S—=5— 8, (0):
Z—Z—Z}and R = {(SZ-1),(5Z-2),(SZ-3)}. A partial derivation tree follows:
1< T (x)

= - = (T-VAR)
IE(H)~(0):t—=1—1 I Ex~xit

(T-APP)

'_"_Jo
T

(4) x5 (0) xi1—1

({m:S}>m:S~repm:1) eR
f‘l F ||b||& llbll :S
fl;{m:S} Fopr B m@pt = [m— "b"]
I F e Zi»[m»—) "b"](repm):1

(T-REW)

- = (T-APP)
I'Fx#"b"~>xorep "b":1

The derivation tree includes several inference rules from Figure 8 — eliding one (T-Var)
and one (T-Rew) instance — but our focus is the (T-Rew) instance using the rewrite
rule (SZ-1). First, the reader may wish to write the derivation of typed pattern matching
to confirm that it holds according to the rules in Figure 9. Second, note that 7, = S
and 7, = 1 and that these type functors match the transformation type functors in the
premise and conclusion. We can instantiate the diagram in Figure 10 to clearly depict
the concrete relationships in this instance:

"b":S(S) ~nns [m— """ m: S(Z)

"o 1(S) ~ s [ "D (rep m) 1 1{Z)

In Section 5.3, we revisit this example for our discussion of transformation semantics.

We have presented the type-related aspects of type-and-transform systems: type
functors and the inference systems for typing rewrite rules and describing transforma-
tions. However, rewriting and transformation also establish semantic relations between
terms. We discuss this in the next section.

5. The Semantics of Type-and-Transform Systems

In this section, we describe the semantics relations of rewriting and transforma-
tion. We begin with a description of a type functor as a difunctor, linking types to
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terms. Then, we discuss the difunctor properties required for typed rewrite rules and
transformation.

5.1. Difunctors

A difunctor [9, 24] is a mixed-variant binary type constructor F' with the F-indexed

dimap function:'*

Dp:Nad bb.(b—d)—(a—b)—Fda—Fbb
The first type parameter of F is contravariant, and the second is covariant. The function
Dr must obey the following laws of identity and distribution over composition:
Dr id id = id (D-ID)
Dp (hog) (ioj) =DpgioDphj (D-COMP)
For a unary type constructor F, the equivalent of a binary constructor F a a in which

the same type parameter appears in both co- and contravariant positions, we write Dr
as:

Dp:VYab.(b—a)—(a—b)—Fa—Fb

A type functor 7 is a unary difunctor F. We write the parameterized constructor as
T(a) = F a and define the dimap as:

o

De:Yab.(a—b)— (b—a)— T(b) — t(a)

Da/g fg=id
D ,sfg=AxDyf goxoDsgf
D fg=g

Note the f and g argument reversal due to contravariance in the function type case.
As with previous functions on types, we can lift the dimap to type functor schemes
and environments. Schemes are straightforward:

D; 1-:Va b.(a—b)— (b—a)—= Gp(1(b)) = Gp(t(a))

D; - = D; where T < ¢

Lifting the dimap to type functor environments requires a slight twist. We give Dy f g
the type I'(b) — I"(a) and define it as a substitution on terms:

ﬂ)lc-:Vab.(a%b)%(b%a)%f"(b)%f{a)
D fg=id
Dy f 8=Dpfgo[Vis Dy gf V]

Note that the use of Dy - in the second case is contravariant.
Here is an example of applying the various dimaps:

14We use D, not dimap, for the function name since it appears a substantial number of times in this article.
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(ido[x+— Dy, ¢ abs rep x])x
[x+— Dy, abs rep x]x
rep x

(Dyx.1y rep abs)x

We do not use Dy. rep abs in any other form, so, for conciseness, we omit the arguments
rep and abs. To reduce the number of brackets, substitution application has a higher
precedence than function application.

5.2. Typed Rewrite Rules

A rewrite rule I'> p;: & ~ p,: £. is typed by the inference rule (RR), but this con-
dition is not sufficient to prevent rewriting from breaking a program. (It is trivial to
come up with an example rewrite rule that changes terms but not types.) Our intention
is ultimately to preserve the semantics of the source term in the target (for a complete
transformation), so we must establish a relation between the rule patterns that connects
them to the source term. From the source type equivalence 7;(4) = 7,(4) (Section 4.2),
we derive the following equivalence on patterns:

Dy, rep abs Dypp; = Dy, rep abs Dpp; (D-REW)

To each pattern, we apply first the environment difunctor Dy. for the rewrite rule envi-
ronment I, which applies a type scheme difunctor D - 10 each metavariable with the
scheme ¢. Then, we apply the pattern type functor D; rep abs: t(R) — £(A4) for the
pattern’s type functor .

The property (D-rRew) must be proven for each typed rewrite rule in a transformation
rule set. These are the respective properties of the rules (Sz-1), (Sz-2), and (Sz-3) in
Section 4.2:

Ds rep abs Dy,.sym = Dy rep abs Dy .51 (rep m) (SZ-D-1)
D, rep abs Dy, ym = Ds rep abs Dy, ) (abs m) (SZ-D-2)
Ds_y5-55 rep abs De(H) = Dy_yy 51 rep abs De (o) (SZ-D-3)

For the proof of an equation, we use equational reasoning with the definitions in Sec-
tion 5.1 and Figure 2. Consider the following, simplified proof of (Sz-D-3):

D)1y, rep abs De(o)

= Dy, rep abso (o) o D, abs rep D, _y1-s1, De definitions
= (Ay.D, rep absoyo D, abs rep) o (¢) o D, abs rep D, _,; definition
= (Ay.absoyorep)o(o)orep D, definition
= Ax.Ay.abs (rep xorep y) simplification
= Ax.Ay.abs (Z (x4)oZ (y+)) rep definition
= Ax.Ay.abs (Z ((x4) o (y4))) © definition
= AxAy.((xH#) o (y4#)) "" abs definition
=AxAyxHy4"" simplification
=(4#) 4 unit, simplification
= Ds_ss-45 rep abs De () D555, De definitions
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The proof for (SZ-D-2) uses a non-empty type functor environment:

Dy rep abs Dy . ym

= abs Dy ym D, definition
= Dy (abs m) substitution distributes over abs application
= Ds rep abs Dy, y(abs m) Ds definition

The proof for (Sz-D-1) is similar.
It is worth noting that, for the equations (SZ-D-1), (SZ-D-2), and (Sz-D-3), we could
use an alternative property that is simpler than (D-rRew):

Dy, rep abs p; = Dy, rep abs p,

In other words, none of the proofs actually require ;. However, this property does
not support more interesting rewrite rules in which both the lhs and rhs patterns mix
metavariables with object variables, such as:

{m:1} > (absm4):S— S~ (mo):1—1

Defining the (D-rew) property for this rule and proving it is an interesting exercise. The
reader may wish to attempt it and then refer to Appendix A for the solution.

5.3. Transformation

In Section 4.3, we established a transformation - e 5 e;: T as a relation between
a source e, and a target e, whose types may differ as specified by the type functor 7. As
with typed rewrite rules, we can relate the semantics of the terms using the difunctor
aspect of the type functor. We apply a dimap to the target term to equate it to the source
term:

es = Dz rep abs Di-e; (D-TRANS)

In a transformation with the type functor 7, the source does not change, so we map the
target e,: T(® ) to a term equivalent to the source e;: T(A) with D; rep abs: T(R ) — T(4)
and Dy..

For an example of (D-TrANs) in use, we present the proof of example (3). In Sec-
tion 4.3, we gave the typing judgment and derivation tree and defined I'}. The equation
is:

X4 "b" = D, rep abs Dy, (xorep "b")

The proof follows:
D, rep abs Dy, (xorep "p")
= D, rep abs (D, abs rep xorep "b") Dy, definition
= abs (rep xorep "b") D, definition
= (Ay.Az.abs (repyorepz)) x "b" (RED-ETA)
= Dy_y1—, rep abs De(0) x "b" Dy_s1—s1, De definitions
= Ds_ss-55 rep abs De(4) x "b" (SZ-D-3)
=x+H"b" Ds_,5-55, De definitions
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In the next section, we discuss the formal definitions and properties of the concepts
introduced in Sections 4 and 5.

6. Definitions and Properties

We have introduced the typing and semantics relations of typed rewrite rules. For
type-and-transform systems, we require the rules to be valid:

Definition 1 (Typed rewrite rule validity). Given a type environment I" and an 4/R_
isomorphism, a typed rewrite rule p = 1" p;: T~ p,: T, is valid if it satisfies:

1. T'F p (Section 4.2)

2. Dy rep abs Dpp; = Dy, rep abs Dyp, (Section 5.2)
A rule set R is valid if every rule p € R is valid forI" and 4/%.. o
We can now formally define a transformation:

Definition 2 (Transformation). Given an 4/® isomorphism, a transformation is a tu-
ple' (IR, e, ¢, ), where R is valid for [(®) and A/R,, that satisfies T+ e X5 ¢ : £
(Section 4.3). °

The first basic property of a transformation is that the source and target terms are
well-typed according to the source and target types and environments given by the
inversion properties (£-1nv), (¢-1nv), and (I™-1nvv) (Section 4.1):

Theorem 1 (Typing of transformation terms). The terms of a transformation Fhel
e : 7 are typed by:

1. T(a) - e: t(a)
2. T(R) e - E(R) al
Proof By straightforward rule induction on the derivations. In the (T-Rew) case, the

rewrite rule validity ensures the rhs and thus the contraction will be appropriately
typed. n

The second basic property is the semantic relation between the source and target terms:

Theorem 2 (Semantics of transformation terms). A transformation IFelse: ¢ sat-
isfies e = Dy rep abs Dy’ (Section 5.3). o

15To be precise, a transformation is a tuple that satisfies the transformation judgment, but we normally use
the judgment to refer to a transformation.

20



Proof By rule induction on the derivations. We discuss some of the cases here. The
remaining cases can be found in Appendix B.
The simplest case is the one for variables. The rule

£ <T(x)
— (T-VAR)
IEx~sx:1
must satisfy x = Dy rep abs Dpx.
Case (T-VaR)
Dy rep abs Dpx
= Dj rep abs Dy X <), D=1"x:7
= D; rep abs (D o [x — Dg abs rep x])x Dpy . definition
= D; rep abs (D; abs rep x) substitution
= D; (absorep) (absorep) x (D-COMP)
= D;ididx (ABS-REP)
=X (D-1D)

In the proof, we use the difunctor laws and unfold the type functor definition to clarify

what happens when applying the substitution. Most importantly, we need the (ABs-RrEp)

direction of the isomorphism to show that the type functor is the identity operation.
The case for fix is more interesting. The rule

=] R o o
I'tewe:t—7¢

_ (T-FIx)
I fixe S fix e : ¢

must satisfy fix e = D; rep abs Dy.(fix ).
Case (T-Fix)

D¢ rep abs Dy (fix ¢')

= D; rep abs (fix Dye’) substitution distributes over fix
= D; rep abs (fix (Dpe' 0id)) o unit
= D; rep abs (fix (Dpe' o Dz id id)) (D-ID)
= D; rep abs (fix (Dpe' o D; (rep o abs) (rep o abs))) (REP-ABS)
= D; rep abs (fix (Dpe' o D; abs rep o Dy rep abs)) (D-coMP)
= D; rep abs (fix ((Dpe’ o D; abs rep) o Dz rep abs)) o associativity
= fix (D; rep abs o Dy’ o D; abs rep) (RED-ROLLING)
= fix (D;_,z rep abs Dy.e’) D;_, ¢ definition
=fixe IH
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Here, we use the difunctor laws again plus some standard properties of substitution and
composition. Since fix is syntactically recursive, the last rule is the inductive hypothesis
(IH), which says that the premise I'Fele: t— 7 satisfies e = D;_,z rep abs @f-e/.

One noteworthy point is the use of (rRep-aBs), which is due to the function argu-
ment to fix. Having a function type means that not only must we convert the result
type (as we did with (aBs-rep) in the (T-VaRr) case), we must also convert the argument
type, which leads to an inversion of the conversion and the need for both directions of
the /R isomorphism. For the same reason, we find (rRep-aBs) in the proof cases for
(T-App) and (T-Let). The latter has an implicit function that can be seen in its semantic
equivalence to a lambda application: let x = ¢; in e; = (Ax.¢2) e;.

To rewrite the fixed point, we use the rolling rule, (REp-RoLLING), wWhich was first
described by Backhouse et al. [2] for a fixed point calculus with the least fixed point.'®
The formalization of the worker/wrapper transformation [13] uses the rolling rule and
provides a nice description of it.

The last case we discuss is the (T-REw) rule

Fele: g (f”mbp/:flvp,:’f,)eR lo“;lg‘,nl—e&pl@e/:>6

— (T-REW)
I'e~0p,: 1
which should satisfy e = D rep abs Dy.(0p,).
Case (T-REw)
Dy, rep abs Dy(Op,)
= 0(Dz. rep abs Dyp,) See Note on 6.
= 0(Dy, rep abs Dpp;) (D-REW)
= Dy, rep abs Dy (0p) See Note on 6.
= Dy, rep abs @f-e/ Lemma 1
=e IH

In this proof case, we use (D-Rew) to rewrite the rhs to the lhs, and Lemma 1, provided
below, shows that ¢’ = 6p,.

Note on 0. In each of the referenced steps, we commute 6 with Dy- and distribute it
over application. Recall that the domain of 0 consists only of metavariables (Figure 9).
The difunctors only apply to object variables or terms, so the domain of 6 does not
conflict, and we can pass 6 around without concern.

This concludes our discussion of the proof. The remaining cases can be found in
Appendix B. [

Lemma 1. IfI;1, - e@p@e’ = 0, then ¢’ = Op. 0

16 According to Backhouse et al. [2], this form of the rolling rule was first derived by Lambert Meertens in
“unpublished discussion notes.”
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Proof By straightforward induction on the structure of p and ¢’ and the standard defi-
nitions of substitution, id, and o. =

The last property is that of a complete transformation, in which £(4) = t(® ). Com-
plete transformations have the special property that the semantics of the terms are also
equivalent. Before giving the definition, however, we need to explain this “same-type”
property.

Recall that 1 indicates where the type changes in a type functor (Figure 5). We then
define a function that determines if 7 “has” any ts:

(¢/B) =true
(1) = false
(t—=9) =1(f) AT(V)

~ ~ e

That is, 1(%) holds iff no 1 appears anywhere in 7. Lemma 2 and Lemma 3 give us
other properties of %:

Lemma 2. If1(7), then T(t) = t(v) for any T and v. o
Proof By straightforward induction on 7. [
Lemma 3. If1(7), then D; f g = id for any f and g. a]
Proof By straightforward induction on 7. "

It is straightforward to lift the function 7(_) to (and prove the lemmas for) type functor
schemes and environments.
We can now define complete transformations:

Definition 3 (Complete transformation). A transformation '\ e e tis complete
ifT(T") and (7). .

The properties follow:

Theorem 3 (Typing of complete transformation terms). Ifa transformation ke
¢’ : T is complete, then the following hold:

1. T=1(a) =[(R) and 7 = £(4) = £(R)
2. The:tandTHeé 7 o

Proof Follows from Theorem 1 and Lemma 2. ]

Theorem 4 (Semantics of complete transformation terms). If a transformation IF

ele tis complete, thene = ¢’ 0
Proof Follows from Theorem 2 and Lemma 3. [ ]

This completes the formal description of type-and-transform systems. In the next
section, we discuss other aspects.
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7. Discussion

In this section, we discuss the algorithmic and practical considerations of type-and-
transform systems.

7.1. Algorithm

Type-and-transform systems can be implemented in algorithmic form, and we have
developed a Haskell implementation,!” which we have used to experiment with all of
the examples in this paper. The code is available for download [20].

The transformation algorithm is a type inference algorithm that implements trans-
formation (Figure 8) in the same way that algorithm WV [25] implements typing (Fig-
ure 4). The primary difference is the addition of rewriting, including typed pattern
matching (Figure 9).

The rewriting inference rule (T-Rew), unlike the other rules of Figure 8, is not
syntax-directed, which means a derivation may not terminate. To guarantee termi-
nation in the algorithm, we restrict it to rewriting a subterm only a finite number of
times. The algorithm is still inherently nondeterministic because any one subterm can
be matched by multiple rewrite rules. As we discuss in the next section, nondeter-
minism allows the algorithm to try different transformations “locally” in the effort of
producing a better transformation “globally.”

We plan to present the details of the transformation algorithm in another article. In
particular, we will show that the algorithm is sound — it implements the transformation
of Definition 2 — which follows from the correspondence to algorithm W. It is trivial
to show that a basic algorithm is not complete due to the flexibility of rewriting, but we
believe we can prove completeness for a restricted formulation of rewriting.

7.2. Practical Aspects

Experiments with our implementation have led us to the choices of supporting very
general typed rewrite rules (per the discussion in Section 4.3) and of simplifying rewrit-
ing by applying each rewrite rule at most once to the same subterm. The latter implies
that we do not produce all possible results. In practice, however, we have found that
to be less of a problem than longer transformation times required for performing more
rewriting.

The nondeterminism due to rewriting leads to the problem of selecting one of many
possible transformations. It is tempting to think that there is an optimal choice, but we
have found no useful strict ordering on transformations. Instead, we have seen multiple
transformation targets that are equally “good.” Consider the three different targets for
the same source in the examples (4), (5), and (6) from Table 1. It is not immediately
obvious which is better; in the context of a larger program, any one of them may prove
more useful.

Some transformations, on the other hand, do seem clearly better than others. Con-
sider the examples in Table 2: two sources, each with two of the many possible targets.

!7The implementation was simplified by using the UNBOUND [40] library for substitution and fresh name
generation, and the performance was improved by using the LogicT monad [19] for efficient nondeterminism.
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Table 2: Examples of transformations with preference

Source Target Preferred

"a A4 b 4 )
abs (rep "a" orep "b" orep "c") v
"a" Habs (rep "b" orep "c")

(Ax.x4x) "a" (8)
abs (Ax.xox) (rep "a")) v

abs ((Ax.rep xorep x) "a")

We have marked which targets we prefer for this particular type-and-transform system
(i.e. this rewrite rule set).

The motivations for the preferred transformations are based on what we see as the
desired outcome for each of the rewrite rules in the rule set. For example, we prefer
to replace as many -+ terms with ¢ terms as possible (i.e. apply (Sz-3) as much as
possible) because ¢ is, in general, more efficient, as discussed in Section 1.1. This
manifests as a preference for the first target in (7).

If there are an equal number of - ~» ¢ rewrites, then we prefer having as few rep
terms introduced as possible. Conversion is not free, so we should only convert when
needed. This results in the preference indicated for (8).

Recall the viral infection analogy of Section 4.2. Ironically, perhaps, we prioritize
the following:

1. maximize the transmission (spread the virus as far as possible),
2. minimize the introduction (infect early), and

3. minimize the elimination (stop late).

In our implementation, we designate each rewrite rule with a weight that indicates the
priorities above and use a simple heuristic to score transformations, choosing one with
the “best” score. If there are multiple results with the same top score, we pick an
arbitrary one.

All of the type-and-transform systems with which we have experimented exhibit the
same characteristics of preference that we have described. Type-and-transform systems
appear ideally suited to these sorts of changes that are whole-program and viral.

8. Parameterized Type Constructors

Up to this point, we have used only simple (nullary) types to simplify explanation.
In this section, we extend our work to support parameterized type constructors and
demonstrate it with difference lists.

The adapted syntax of types and type functors follows:
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A type constructor is either a type variable (c,d) or a base type constructor (C), and
we now use 1 as a type functor constructor. We modify type projection, (@), for
constructors and extend it with new cases:

*/B(@) =/p
(—=10)(p) = () = ()
(CP)(p)=C1(g)
(1)) =¢ (9)

In the last two cases, C and ¢ are difunctors, as we can see more clearly in the definition
of D;:

D;:Ved.(Vab.(a—b)— (b—a)—cb—ca)—
(Vab.(a—b)— (b—a)—db—da)—
Va.(ca—da)— (da—ca)—1(d)—1(c)

@'1/3 dedyf g =

Di i de dy f § = Ax.Dys de dg f goxo Dy dy de 8 f

Det dedaf 8=Dc(Ds da d: 8 f) (Ds dc daf )

Dyt dedgf g=gody (Ds dyde gf) (Vs & daf g)

Here, D¢ is the dimap for the base constructor C, and the function arguments 4, and
dy are the dimaps for the relevant type constructors. Note that we do not define D; for
type constructor variables because we do not have a dimap for those.

As an aside, if the parameter of a type constructor ¢ is not used in contravariant
positions, then Dy, f g = map, g, where map,, is the covariant functor of ¢.

The type-and-transform systems work of Sections 4, 5, and 6 can be developed in a
straightforward manner for unary type constructors. It is also possible to define D; for
type constructors of arbitrary arity using kind-indexed types [15].

8.1. Difference Lists

With support for parameterized type constructors, we can describe the transforma-
tion for Hughes’ lists or difference lists, mentioned in Section 1.1.

Difference lists are trivially different from difference strings (Figure 2). The func-
tion definitions are the same; only the type and the type signatures differ:

rep::la]-Ha (0):Ha—Ha—Ha

newtype H a = H ([a] = [a]) abs:Ha—[a] € :Ha

To describe the transformation of lists to difference lists, the following inputs are
needed for the type-and-transform system:

1. Type (constructor) pair and functions to witness the isomorphism
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2. Typed rewrite rules, including rules with the conversion functions

3. Proof that the rewrite rules are valid (according to Definition 1)

As far as what is necessary for a practical system, only the rewrite rules are needed.
The isomorphism is implied by the rules, and the proof is an external obligation for
correctness. We leave the proof as an exercise for the reader. In general, these proofs
are not very difficult. They follow the style of the example proof in Section 5.2.

The typed rewrite rules for the list-to-difference-list transformation are:

{m:]a]}>m :[d] ~repm:la )
{m:ta}pm:ta ~»absm:|a] (10)
e>H:[a]—=[a] = [a]~o ‘ta—ta—tla (an
e>[] :[d] ~ € ‘la (12)

In addition to rewrite rules adapted from the difference string rules of Sections 4.2,
we add the rewrite rule (12) to cover the case of rewriting empty lists. This rule is not
strictly necessary; it is merely an optimization of (9) when the term is an empty list.
But (12) gives us nicer transformations and demonstrates that we can extend a rewrite
rule set with overlapping rules as well as perform some basic compiler optimizations.

There are some interesting transformations that we can demonstrate. The first is
the reverse example (shown as source above target):

2]
2])

In lieu of pattern matching (i.e. with case in Haskell), we use the list eliminator:

let reverse =fix (Af.list [] (Axxs.fxs4  [x])) in reverse |1
let reverse’ = fix (Af.list e (Axxs.fxs o rep[x]))inabs (reverse’ [1

list:Yab.b— (a— [a] = b) —[a] =D

Note, as we mentioned in Section 1.1, how the transformation in reverse’ extends be-
yond the function definition. An example similar to reverse is the concat function:

let concat = fix (Af list [] (Axxs.  x+4fxs))in concat [[0],[1]]
let concat’ = fix (Af.list € (Axxs.rep x o f xs)) in abs (concat’ [[0],[1]])

These examples barely touch the surface of how much of a program can be changed
by a transformation. For example, by changing the function /list to the difference list
eliminator dlist, we can also change the types of the inputs to these functions. In
a related paper, van Eekelen et al. [36] explore the options for transforming data con-
structors and patterns, which allow for even more parts of a program to be transformed.

9. Other Applications

In this section, we describe two more applications of type-and-transform systems
in the style of Section 1.1. With each concrete example, we give the rewrite rules for
the transformation as in Section 8.1.
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9.1. Generalization

Software reuse means writing code that can used more than once. One technique
for doing this is generalizing the code: abstracting over the details to create code that
can be instantiated in more places.

Scenario. Pat writes a program using type A. It solves the problem for the moment, but
Pat realizes that it would be useful to have a type B T, where B is some parameterized
type and T is the argument that would instantiate a type isomorphic to A. This would
be useful for using functions defined on B and even for instantiated B with another
argument.

Pat instructs the IDE (or command-line tool) to transform A-terms to B T-terms
using the type-and-transform system. Now, Pat can begin using the benefits of B.

Typical Examples. Trivial transformations include changing a specialized IntList to
[Int] or [Int] to Seq Int (a finger tree [16] of Ints). A more interesting example is trans-
forming a datatype to a type class, e.g. String to (roughly) StringLike a = a, assuming
there is an instance of StringLike for String. In other words, the methods of the type
class StringLike are smart constructors, and we are not changing the type so much as
changing the terms that construct and use the type. After transformation, String can be
substituted with another type that has an instance of StringLike.

Transforming specialized code to datatype-generic code is an example of this sce-
nario. In datatype-generic programming (DGP), the structure of a datatype is repre-
sented by a collection of other types, isomorphic to the original datatype [10]. (In the
scenario, T is the structure representation in B 7'.)

Many generic functions are available with DGP libraries. Some libraries hide their
representation from the user but some require users to program with it, often using
smart constructors [34, 21]. We present a simplified example as a case study.

Example: Fixed-Point of Base Functors. A regular datatype in Haskell can be repre-
sented as the fixed point of a base functor. For example, the datatype Expy is the base
functor of Exp:

data Exp =Val Int | Add Exp Exp
data Expp r = Valp Int | Addpr r

Expr is a simple copy of the datatype with every recursive position replaced by a fresh
type parameter r. The fixed point of Expp. is defined using a datatype Fix that embodies
recursion in the type:

newtype Fix f = In {out::f (Fixf)}
type FExp = Fix Expp

Given a Functor instance of Expp, we get natural recursion on FExp using a fold (or
catamorphism):

fold:: Functorf = (fa—a) = Fixf —a
fold alg = alg o fmap (fold alg) o out
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The types Exp and FExp are isomorphic (modulo undefined values):
from:: Exp — FExp
Sfrom (Val i) =val i
from (Add e e2) = add (from e;) (from e;)
to:: FExp — Exp
to (In (Valp 1)) =Vali
to (In (Addp e; e2)) = Add (to eg) (to e7)
Rather than construct FExp terms directly, as in:
three = In (Addp (In (Valp 1)) (In (Valr 2)))
Wwe use smart constructors:
val :: Int — FExp
val i = In (Val i)
add:: FExp — FExp — FExp
add e e; = In (AddF e e7)
As an additional convenience, we define a specialized fold for FExp:!8

JoldFExp::(Int—r)— (r—r—r)—>FExp—r
foldFExp v a = fold alg
where alg (Valp i) =vi
alg (Addp ry rz) =aryr

To contrast the recursion styles of Exp and FExp, we show the evaluation function for
each:

eval:: Exp — Int
eval (Val i) =i
eval (Add ej e2) = eval e; +eval e,

evalp :: FExp — Int
evalp = foldFExp id (+)

Transformation. The Exp-to-FExp transformation can be split into two logical classes
of rewrite rules:
1. Rewriting built-in constructors to their smart-constructor analogs:

e>Val :Int— Exp ~>val Int—1 (13)
E>Add:Exp—Exp—Exp~add:1—1—1 (14)

Note that these are the transmission rules of Section 7.2. Rule (14) is more
preferred because it can infect via both of its arguments.

18We can, of course, define foldExp just as easily, but there are other approaches, e.g. pattern functors [41],
that can provide convenient folds for free. For the sake of simplicity, we present only the base-functor
approach.
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2. Inserting conversions where necessary:

{m:Exp}>m:Exp~> fromm:1 (15)
{m:1}pm:1 ~tom :Exp (16)

If the entire programming interface consisted only of Val and Add, then it may seem
like the conversion class of rules would be unnecessary. In other words, the problem of
transformation becomes a simple matter of term rewriting, not typed rewriting. How-
ever, once a function such as isVal:: Exp — Bool is included in the interface without
including a rule rewriting it, then the simple term rewriting approach breaks down:
it will change the type of the argument to isVal without changing the type of isVal.
Conversion is necessary for these cases, which we believe to be common in real-world
situations.

One may instead take the contrary view and suggest that the smart-constructor class
of rules is unnecessary and that the conversions are enough. Recall that the goal of this
scenario is to perform a sort of refactoring to change as much of the code as possible,
allowing Pat the programmer to begin using the new generic interface. If the code
was riddled with applications of to and from, this would arguably not be considered an
improvement to the program. Code readability could be significantly impaired, and Pat
would need to do more work to find the right places to use generic functions. Lastly,
generic programming approaches such as incrementalization [21] benefit more from
the continuous use of a generic representation rather than repeated conversion between
representations.

9.2. Integration

Software development sometimes requires using multiple libraries with variations
on the same concepts. Type-and-transform systems can assist in integrating these li-
braries.

Scenario. Pat has two libraries with the respective types A and B that denote the
“same” idea but serve different purposes (e.g. by having different APIs). Pat prefers
type A in one part of the code and type B in a different part, but Pat still needs to
translate As to Bs and vice versa, so that the parts stay connected.

To transform a part of a program, Pat selects a well-scoped subprogram, such as one
or more modules, and directs a type-and-transform tool to transform that subprogram.
This leaves the rest of the program untouched.

Typical Examples. Time is often implemented in different ways: Unix system time,
clock time, time stamps (e.g. for NTP), etc. Calendar dates are defined with numerous
standards: Gregorian, Hijri, Gujarati, etc. Multiple data representations are common:
consider the various representations of XML, JSON, and other serialization formats.
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complex-rect rect  ::Float— Float — Rect
real  ::Rect— Float
imag ::Rect— Float
+Rr, Xg:: Rect = Rect — Rect

complex-polar polar ::Float — Float — Pol
mag  ::Pol— Float
phase ::Pol — Float
~+p, Xp:: Pol = Pol — Pol

Figure 11: Interfaces of two libraries for complex numbers

Example: Complex Numbers. As a simple example, we consider integrating two li-
braries, presented in Figure 11, for representing complex numbers [11, 38]. The library
complex-rect uses the rectangular (Cartesian) coordinate system with the Rect type,
and the library complex-polar uses the polar coordinate system with the Pol type.

Each library has a function (rect or polar) for constructing a value of its type from
Floats, though the arguments naturally have different meanings. The components of
the Rect representation are provided by real and imag, while the components of Pol are
provided by mag and phase. Both libraries have analogous functions for performing
addition and multiplication. If the libraries do not provide conversion functions, we
must write them:

asPol :: Rect — Pol
asRec :: Pol — Rect

Transformation. Suppose that we need a transformation to change Rect-terms to Pol-
terms. The typed rewrite rules are:

{m:Rect}>m :Rect ~>asPolm :1 a7n
{m:1}>m 1 ~» asRec m: Rect (18)

€ > +pg:Rect — Rect — Rect ~» +p 11—l (19)

€ D> Xp:Rect—» Rect — Rect ~ Xp 11—l (20)

Some functions do not have analogs. In the transformed program, they may end up
using the isomorphism functions: e.g. rect becomes asPolo rect and real becomes real o
asRec. As with previous examples, we prioritize the transmission rules (19) and (20) in
our implementation.

10. Related Work

Program transformation is studied in many contexts, and there is a vast amount of
related work. In this section, we identify a subset of the work that is most relevant and
compare it to type-and-transform systems.

Term rewriting is a technique that has been extensively applied to program trans-
formation. Stratego [37] is a well-known language and tool set for program trans-
formation using rewriting. It is representative of strategy languages in which many
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transformations can be specified. With standard term rewriting, it appears to be diffi-
cult to support type-changing rewrite rules while preserving type safety and semantics.
Type-and-transform systems can perhaps be viewed as an adaptation of term rewriting.

Some applications of type-and-transform systems can be considered refactoring or
interactive program transformation. HaRe [23] is a Haskell refactoring tool that sup-
ports a number of automatic refactorings; however, it does not provide type-changing
rewriting for whole-program transformations. Other tool-supported equational reason-
ing approaches include PATH [35] and HERMIT [7], both of which do not appear
to directly implement the sort of automatic, whole-program, type-changing rewriting
that type-and-transform systems employs. Nonetheless, it may be possible to build a
type-and-transform system with one of these systems.

Erwig and Ren [6] define an update calculus, whose capabilities include rewrites
and scope changes as well as update composition, alternation, and recursion. Their
type-change system ensures that an update preserves type correctness for many type-
changing transformations. The update calculus is intended for some type-changing
updates; however, it does not have a mechanism for propagating type changes through
bound variables. We were unable to specify any of our examples in the update calculus.
On the other hand, a key feature of the update calculus is its support for scope changes,
something that type-and-transform systems do not allow. It appears that type-and-
transform systems and the update calculus complement each other.

One might see our approach as a type-and-effect system [12] if one views the
transformation as a side effect of an extended type system. However, that analogy is
stretched rather thin. We do not modify how the type system works, but instead derive
from the type a type functor that relates programs using the underlying type system.

Cunha and Visser [4] describe a strongly typed rewriting system for calculating
transformations that change both the structure of types and terms. They use a point-free
program calculus with one constructor for pointwise functions over which no transfor-
mation is done. We do not distinguish different forms of syntax: all functions in the
lambda calculus can be transformed. Type-and-transform systems, on the other hand,
do not provide strategies for rewriting: the type changes drive the rewriting.

Coercions are functions inserted into a program to change terms from one type to
a subsuming type. Kiefling and Luo [18] define coercions in a Damas-Hindley-Milner
type system using subtyping instead of an isomorphism between types. Their coercions
serve a similar purpose to our rewrite rules, though the latter are slightly more general.
Our notion of a complete transformation is loosely related to their idea of completion.
Swamy et al. [33] describe type-directed coercion insertion in simply-typed lambda
calculus with a focus on non-ambiguity. Our work takes advantage of ambiguity (via
multiple rewrites) to find the “best” transformation. One primary difference between
coercions and type-and-transform systems is that the latter allow for type changes to
propagate through bindings while the former restrict type changes to function applica-
tion.

One closely related line of research is the worker/wrapper transformation [13, 30],
a proof technique for systematically transforming a recursive computation with the
aim of improving its performance. The two approaches share similar tools, such as
changing the types of parts of a program, and some of the transformations are similar
— Gill and Hutton [13] also use the reverse example. However, their work differs from
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ours in several respects.

First, the focus of a worker/wrapper transformation is a single recursive function or
a group of mutually recursive functions. The focus of a type-and-transform system, on
the other hand, is restricted only by the scope given to it, which may be a function, a
module, or an entire program. A worker/wrapper transformation is primarily intended
for improving performance, while a type-and-transform system may be used for other
applications (see Section 9).

Second, a worker/wrapper transformation requires manual steps to change a func-
tion into a “worker” component, which may have a new type, and a “wrapper”” compo-
nent that has the same type as the original function and massages the input and output
for the worker. Sculthorpe et al. [31] show that a worker/wrapper transformation can
be mechanized to run in the GHC compiler; however, the transformation steps must
still be defined and ordered. A type-and-transform system is a fully automatic system
that requires defining a set of typed rewrite rules. We believe these rules are reasonably
simple, but there may be a large number of them, depending on how many different
symbols one wants to rewrite. The type-and-transform system rewrite rules are natu-
rally restricted to the general constraints of the system and the lack of context, since
they should be applicable anywhere, while the rewrite operations of a worker/wrapper
transformation can be sequenced and use context to select the appropriate time and
place of application.

Whether one wants to use a worker/wrapper transformation or a type-and-transform
system depends on the situation. Our impressions are that neither approach subsumes
the other and that each demonstrates an interesting and useful approach to improving
programs.

11. Conclusions and Future Work

This paper introduces type-and-transform systems: automatic program transfor-
mation with type-changing rewriting that is type-safe and semantics-preserving. The
type-and-transform system of a programming language is the specification of trans-
formations, derived from the language’s type system, and typed rewrite rules, which
change terms and types in a regular fashion. We described the type-and-transform
system for the lambda calculus with let-polymorphism and general recursion, and we
proved that a complete transformation preserves typing and semantics.

We continue to investigate and refine type-and-transform systems. As stated in Sec-
tion 1, we are working on improving our proof technique. There are connections from
type-and-transform systems to abstraction [28], representation independence [26], and
parametricity [39]. For example, we might consider 1 as a special free variable and
treat the type as a relation on types that instantiate 1 differently. The connection to para-
metricity is not immediate, however. In parametricity, the type relation Va.[a] — [a]
holds for any type relation instantiated for a. In type-and-transform systems, the same
type relation holds only if the instantiating types are isomorphic. We will explore these
connections in more depth in future work.

We plan to expand the model of type-and-transform systems to allow for trans-
formation between a larger variety of types. We also want to describe transformation
sequences and transformations with multiple types.
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Type-and-transform systems may also be applicable to compilers, e.g. for whole-
program optimization. We have done preliminary work with System F, and we will
look into System FC, the core language of GHC.

This paper used a toy language to explain the theory and prove properties. We plan
to build on this foundation by developing the theory for larger object languages such
as Haskell and writing tools to experiment with real-world programs and investigate
practical aspects of type-and-transform systems such as transformation effectiveness,
algorithm performance, and choice heuristics.
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Appendix A. Proof of (D-rew) Example
In Section 5.2, we mentioned the following typed rewrite rule:
{m:1} > (absm4):S— S~ (mo):1—1

To avoid confusing syntactic complications of infix operators, we use append = ()
and compose = (¢) in strictly prefix positions:

{m:1} > append (abs m):S— S~ compose m:1—1
The corresponding (D-REW) property is:
Dy rep abs D,y (append (abs m)) = Dy, rep abs Dy, (compose m)
The proof of this property follows:

Ds—s rep abs Dy .,y (append (abs m))

= D1y (append (abs m)) Ds_,s definition
= append (abs (rep m) Dy 1 definition
= M m (ABS-REP)
= Ay.append my (RED-ETA)
= Ay.append m (append y "") + unit
= /ly.(M mOMy) " o definition, (RED-LAM)
= Ay.abs (Z (append mo append y)) abs definition
= Ay.abs (compose (Z (append m)) (Z (append y))) © definition
= Ay.abs (compose (rep m) (rep y)) rep definition
= Ay.abs ((compose (rep m) orep) y) o definition, (RED-LAM)
= abs o compose (rep m) o rep o definition
= D, rep abs o compose (rep m) o D, abs rep D, definition
= D,_,, rep abs (compose (rep m)) D,_,; definition
= D,_,, rep abs @{m;l}(compose m) D1} definition
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Appendix B. Proof of Transformation Semantics

This appendix gives the cases omitted from the proof of Theorem 2 in Section 6.
For each proof case, we include the relevant rule for a convenient reference.

Fhe 8 t=t  Treld:t
_ — - (T-APP)
Ihejey~ees: v
Case (T-Arp) ¢; e3 = Dy rep abs Dy (€] €))
Dy rep abs Dy.(€] €5)
= Dy rep abs (Dpe Dpeh) substitution distributes over application
= Dy rep abs (D re] (D id id Dye})) (D-ID)
= Dy rep abs (D Fe, (D2 (rep o abs) (repoabs) rez)) (REP-ABS)
= Dy rep abs (Dpey (D abs rep (Dz rep abs Dye)))) (D-comp)
i rep abs Dpe’ (D; rep abs Dyeh) D;_, 5 definition

=ejep IH

Fox:ithesse ¥

(T-LAM)
[FAxesAxe 259
Case (T-Lam) Ax.e = D;_,;; rep abs Dy(Ax.e')
D;_, 5 rep abs Dp(Ax.e')

= D;_, rep abs (Ax.Dpe’) D distributes over A since x: 7 ¢ I
= Dy rep abs o (Ax.Dpe') o D; abs rep D;_, s definition
= Ax.Dg rep abs ((Ax.Dpe') (D¢ abs rep x)) o definition
= Ax.Dy rep abs [x — D; abs rep x] Dy’ (RED-LAM)
= Ax.Dy rep abs ([x — Dz abs rep x] o Dy.)e’ substitution composition
= Ax.Dy rep abs (Dyo [x — Dz abs rep x])e’ commute o since x: ¢ ¢ I
= Ax.Dy rep abs Dy. . € Dy ¢ definition
=Ax.e IH
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© R ° © ° R o
Ibejweiit Tox:Gu(f)Fer~es:

- (T-LET)

> . R .
I'Hletx=e;ine;~letx=¢)ines: ¥

Case (T-LET) let x = ¢; in e; = Dy rep abs Dy (let x = ¢ in ¢})

Dy rep abs Dy(let x = ¢} in €})
= Dy rep abs (let x = Dy in Dye))
D;. distributes over let since x: G(7) ¢ I

= Dy rep abs [x — Dpe; | Dp.e) (RED-LET)
= Dy rep abs ([x — Dpe] o Dp.)e substitution composition
= Dy rep abs ([x — D ¢ id id D, Dyey] 0 Dp)ey (D-0), ¢ = G¢(7)
= Dy rep abs ([x — Ds. i (repoabs) (rep o abs) Dy.e] o Dy )e) (REP-ABS)
= Dy rep abs ([x — D < i abs rep (@5 [ rep abs Dyey)] o D) (D-COMP)
= Dy rep abs ([x — D - rep abs D, reh]o[x— D; - abs rep x] o Dp)eh

substitution composition

= Dy rep abs ([x —~ D, - rep abs D, D€ o Do [x D; - abs rep x])eh
commute o since x: ¢ ¢ I’

=[x D; - rep abs Dyey] (D rep abs (Dyo [x — D; < i abs rep x))é)
substitution dlstrlbutes over application

=letx =D, ; rep abs D D€} in Dy rep abs (Dy.o [x — D; 1 abs rep x])é,

(RED-LET)

= let x = D; rep abs Dy in Dy rep abs (Dp.o [x — D; - abs rep x])é,
Dy ¢ definition

= let x = D; rep abs D: e, in Dy rep abs D, Dy ,.¢€2 Dy. definition

letx=¢;ine; IH
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