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Abstract

This is a collection of open problems presented at the Lorentz Workshop “Enumeration
Algorithms using Structure” which took place at the Lorentz Center of the University of
Leiden (The Netherlands), August 24 - 30, 2015. The workshop brought together researchers
interested in various aspects of enumeration algorithms; in particular classical output-sensitive
enumeration including output-polynomial and polynomial delay algorithms and the input-
sensitive enumeration mainly dealing with exact exponential time enumeration algorithms
and combinatorial bounds.
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Endre Boros

Disjoint coverings of linear orders

Let V = {1, 2, ..., n}, where n is a positive integer, K(V ) = (V × V ) \ {(u, u) | u ∈ V } be the set
of all ordered pairs, and denote by SV the set of permutations of V .

For a subset A ⊆ K(V ) and a permutation π ∈ SV we say that π is a linear extension of the
directed graph G(A) = (V,A) if for all (u, v) ∈ A we have π(u) < π(v).

A family Ai ⊆ K(V ), i = 1, ...,m is called a disjoint cover of SV if for every π ∈ SV there exists
a unique index i such that π is a linear extension of G(Ai). (Clearly, a necessary condition for
this is that G(Ai), i = 1, ...,m are all acyclic, and that G(Ai∪Aj) has a directed cycle for all pairs
1 ≤ i < j ≤ m.)

We would like to generate all disjoint covers of SV in an output efficient (say incremental
polynomial) way. The corresponding decision problem arises:

Next-DC: Given subsets Ai ⊆ K(V ), i = 1, ...,m such that

(i) G(Ai) is acyclic for all i = 1, ...,m, and

(ii) G(Ai ∪ Aj) contains a directed cycle for all 1 ≤ i < j ≤ m,

is there a permutation π ∈ SV that is not a linear extension of any of these directed graphs?

The complexity of problem Next-DC is open.

Remark 1

• If condition (ii) does not hold, then the problem is NP-hard, in general.

• If the number of linear extensions of any directed graph obtainable from G(Ai) by a series
of contractions can be computed in poly(n) time for all i = 1, ...,m then the problem can be
solved in poly(n,m) time. For instance, if |Ai| ≤ k for some constant k for all i = 1, ...,m
then the problem is polynomial.

Maximal negative cycle free subgraphs

Given a directed graph G = (V,A) and an arc weight w : A 7→ R, a directed cycle C ⊆ A is called
a negative cycle if w(C) < 0.

Is it possible to generate in an output efficient way (say in incremental polynomial time) all
maximal subsets F ⊆ A of the arcs such that (V, F ) does not have a negative cycle with respect
to the given arc weight w?

Vertices of bounded polyhedra

Consider bounded polyhedra given by a system of linear inequalities: P = {x | Ax ≤ b, c ≤ x ≤ d},
where A ∈ Rm×n, b ∈ Rm, and c, d ∈ Rn, c ≤ d.

Is it possible to generate in an output efficient way (say in incremental polynomial time) all
vertices of such polyhedra?
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Anti-simplices

Consider a finite point set P ⊆ Rd in an Euclidean space, and set 1 = (0, ..., 0) ∈ Rd. For a subset
X ⊆ P we denote by conv(X) the convex hull of the points in X. Let us call a subset X ⊆ P
covering if 1 ∈ conv(X), and noncovering otherwise. A maximal noncovering subset is also called
an anti-simplex.

Is it possible to generate in an output efficient way (say in incremental polynomial time) all
maximal noncovering subsets of P?

Khaled Elbassioni

Complexity of Dualization over Products of Partially Ordered Sets

Let P = P1 × . . . × Pn be the product of n partially ordered sets (posets). Denote by � the
precedence relation in P and also in P1, . . . ,Pn, i.e., if p = (p1, . . . , pn) ∈ P and q = (q1, . . . , qn) ∈
P , then p � q in P if and only if p1 � q1 in P1, p2 � q2 in P2,. . . , and pn � qn in Pn. For a set
A ⊆ P , let A+ = {x ∈ P | x � a, for some a ∈ A} and A− = {x ∈ P | x � a, for some a ∈ A}
denote respectively the ideal and filter generated by A. Any element in P\A+ is called independent
of A. Let I(A) be the set of all maximal independent elements for A, also called the dual of A in
P :

I(A)
def
= {p ∈ P | p 6∈ A+ and (q ∈ P , q � p, q 6= p ⇒ q ∈ A+)}.

Then we have the following decomposition of P

A+ ∩ I(A)− = ∅, A+ ∪ I(A)− = P .

Call A an antichain if no two elements are comparable in P . We are concerned with the following
dualization problem:

DUAL(P ,A,B): Given an antichain A ⊆ P in a poset P and a collection of maximal independent
elements B ⊆ I(A), either find a new maximal independent element x ∈ I(A) \ B, or state
that the given collection is complete: B = I(A).

If P is the Boolean cube, i.e., Pi = {0, 1} for all i = 1, . . . , n, the above dualization problem
reduces to the well-known hypergraph transversal problem, which calls for enumerating all minimal
subsets X ⊆ V that intersect all edges of a given hypergraph H ⊆ 2V . The complexity of this
problem is still an important open question, for which the currently best known algorithm [3] runs
in quasi-polynomial time poly(n,m) + mo(logm), where m = |A| + |B|, providing strong evidence
that the problem is unlikely to be NP-hard. More generally, when each Pi is a chain, that is, a
totally ordered set, the problem was considered in [1], where it was shown that the algorithms of
[3] can be extended to work in quasi-polynomial time, regardless of the chains sizes. It is natural
to investigate whether these results can be extended further to wider classes of partially ordered
sets. In [2], we achieve this for the cases when each Pi is

(i) a join (or meet) semi-lattice with constant width,

(ii) a forest, that is a poset in which the underlying undirected graph of the precedence graph is
acyclic, and in which either the in-degree or the out-degree of each element is bounded by a
constant, and

(iii) the lattice of intervals defined by a set of intervals on the real line R.
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Open question: Is problem DUAL(P ,A,B) NP-hard for the more general case of products of
arbitrary posets? Can the problem can be solved in quasi-polynomial time, at least for posets Pi

of small size?

Mamadou Kanté

The vertex set of a graph G is denoted by V (G), its edge set by E(G), and their sizes are
denoted respectively by n and m. Similarly, the vertex set of a hypergraph H is denoted by V (H)
and its hyperedge set by E(H).

Enumeration of Minimal Connected Dominating Sets

Let G be a graph. A subset D of V (G) is a connected dominating set if D is a dominating set
of G and G[D] is connected. We denote by CD(G) the set of (inclusion-wise) minimal connected
dominating sets in G. Observe that D is a minimal connected dominating set if for each x ∈ D
either D \ x is not connected or N [D \ x] 6= V (G). It is worth noticing that CD(G) is different
from the set of minimal dominating sets that are connected. We are interested in the enumeration
of CD(G) in output-polynomial time (CDom-Enum).

S ⊂ V (G) is a separator of a graph G if G \ S is not connected and we denote by S(G) the
set of (inclusion-wise) minimal separators of G. T ⊆ V (H) is a transversal of a hypergraph H
if T intersects every hyperedge of H and we denote by tr(H) the set of (inclusion-wise) minimal
transversals of H. The following are proved in [8].

1. For every graph G, CD(G) = tr(S(G)).

2. For every hypergraphH, one can construct a split graph G(H) such that tr(H) = CD(G(H)).
The same holds if we replace split graph by co-bipartite graph.

From (1) and (2) we know that for some graph classes the Hypergraph Dualisation problem
and the CDom-Enum are equivalent problems, e.g., chordal graphs, and for others the Hyper-
graph Dualisation is at least harder, e.g., circular-arc graphs, circle graphs, etc. Because of
(1) we suspect the following conjecture.

Conjecture 1 There is no output-polynomial algorithm for enumerating the minimal connected
dominating sets in graphs, unless P = NP .

Since it is unlikely that there is a graph class C for which |CD(G)| = poly(n,m) for each G ∈ C,
and the computation of a minimum connected dominating set is NP -complete on graphs in C, we
conjecture the following (under Conjecture ).

Conjecture 2 Let C be a class of graphs. If there is a polynomial p(x, y) such that for each graph
G ∈ C, we have |CD(G)| ≤ p(n,m), then there is a polynomial time algorithm for enumerating the
minimal connected dominating sets of graphs in C.

Enumeration of (Non) Locally Equivalent Graphs

Given a graph G and a vertex x of G, the local complementation of G at x is the graph, denoted
by G ∗ x, obtained from G by replacing G[N(x)] by its complement. Of course, G ∗ x ∗ x = G.
A graph H is locally equivalent to a graph G if H can be obtained from G by a sequence of local
complementations [5, 6, 7]. Observe that being locally equivalent is an equivalence relation. One
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can check in polynomial time whether two graphs on the same vertex set are locally equivalent
in polynomial time [4, 7]. The local complementation operation is used to define the quasi-order
vertex-minor 1 on finite graphs and is related to the complexity measure rank-width [9]. For instance
circle graphs are characterised by a finite list of graphs to exclude as a vertex-minor [5], and graphs
of bounded rank-width are characterised by a finite list of graphs to exclude as vertex-minors [9].
We are interested in the following questions

Problem. Lc-Equivalent (resp. Iso-Lc-Equivalent)
Input. A graph G.
Output. The set of (resp. non-isomorphic) graphs locally equivalent to G.

Problem. Gen-Lc-Equivalent (resp. Gen-Iso-Lc-Equivalent)
Input. A positive integer n.
Output. The set of (resp. non isomorphic) non locally equivalent graphs with n vertices.

If H is locally equivalent to G, then the distance between H and G is the minimum number
of local complementations to apply to G to obtain H. From [6] the distance between two graphs
is bounded by max{n + 1, 10

9
n}. Therefore, Lc-Equivalent admits an output-polynomial time

algorithm. Similarly for Iso-Lc-Equivalent if G belongs to a graph class closed under local
complementation and admitting a polynomial time Isomorphism Testing algorithm. However,
the algorithm uses exponential space and consists in doing the following: Generate all graphs
locally equivalent to G at distance 1, then those at distance 2, and so on until the generation of
graphs at distance max{n+1, 10

9
n}; keep a graph (or one representative of each isomorphism class)

only if it was not generated on previous steps.

We are interested in the following questions.

Question 1. Does Lc-Equivalent admit a polynomial delay and polynomial space algorithm?
Is it the case also for Iso-Lc-Equivalent if we assume that the input is in a graph class
closed under local complementation and admitting a polynomial time Isomorphism Test-
ing?

Question 2. Are Gen-Lc-Equivalent and Gen-Iso-Lc-Equivalent doable with polynomial
delay and polynomial space in graph classes closed under local complementation and admit-
ting a polynomial time Isomorphism Testing algorithm?

Question 3. Is Isomorphism Testing a bottleneck for obtaining an output-polynomial algo-
rithm for Iso-Lc-Equivalent, Gen-Lc-Equivalent and Gen-Iso-Lc-Equivalent?

1A graph H is a vertex-minor of a graph G if H is an induced subgraph of a graph locally equivalent to G.
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Mikko Koivisto

Enumerating disjoint pairs

Problem: Given a family F of subsets of {1, 2, . . . , n}, enumerate the disjoint pairs of F , that
is, the elements of D(F ) := {(X, Y ) ∈ F ×F : X ∩ Y = ∅}.

Open question: Can the problem be solved in time O∗(|↓F |+ |D(F )|), where the family ↓F
consists of the members of F and their subsets, and O∗ hides factors polynomial in n?

Remarks:

1. The problem can be solved trivially in time O∗(|F |2).

2. Cannot decide whether D(F ) is empty in time O∗(|F |p) for any p < 2, unless the strong
exponential time hypothesis fails [ R. Williams, A new algorithm for optimal 2-constraint
satisfaction and its implications. Theor. Comput. Sci. 348 (2005) 357–365 ].

3. Can count the pairs (i.e., compute |D(F )|) in time O∗(|↓F |) [ A. Björklund, T. Husfeldt,
P. Kaski, M. Koivisto, Counting paths and packings in halves. ESA 2009, pp. 578–586 ].

Janne Korhonen

The number of connected sets

Connected sets. Let G = (V,E) be a graph. We say that a vertex set U ⊆ V is connected if
the the subgraph G[U ] induced by U is connected. Let C ⊆ 2V be the family of connected sets in
the graph G.

In general, the number |C| can be very large; for instance, a clique on n vertices has 2n connected
sets, and a star has 2n−1+n−1. Here we are interested in bounding |C| on suitable graph classes. In
particular, this is motivated by the work of Björklund et al. [11], who show that the classic Bellman–
Held–Karp dynamic programming algorithm [10, 12] for the travelling salesman problem can be
modified to run in time |C|nO(1), and give bounds of form cn with c < 2 for |C| on bounded-degree
graphs and triangle-free bounded-degree graphs. These bounds were recently improved slightly by
Kangas et al. [13] for small maximum degree bounds ∆; see Table 1 for the the best known bounds.

Our open problems concern both improving the above bounds on bounded-degree graphs, and
generalising this framework to other graph classes:

Question 1: What are the tight bounds for the number of connected sets on graphs with maxi-
mum degree ∆?

Question 2: Are there other graph classes where we can bound the number of connected sets by
cn for c < 2, and does this give improved TSP algorithms on those graph classes?

The currently known bounds are based on application of Shearer’s entropy lemma, which seems to
be difficult to apply if the graph does not have bounded degree. This raises the question whether
there are other techniques in the enumeration algorithmics toolbox that can be used to improve
the known bounds.
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Table 1: Best known upper bounds and lower bounds for maximum |C| in bounded-degree graphs.
Smaller additive terms are omitted for clarity; see Kangas et al. [13] for details.

Maximum degree

3 4 5 ∆

Upper bound 1.9351n 1.9812n 1.9940n (2∆+1 − 1)n/∆+1

Lower bound 1.5537n 1.6180n 1.7320n —

Variants. Besides connected sets, there are two other set families where answering the analogs
of Questions 1 and 2 would give also improved bounds for TSP [11]:

(1) The number of connected dominating sets can be used to bound the running time of polynomial-
space TSP algorithms for graphs with bounded integer weights.

(2) Let s, u ∈ V be two distinct vertices. We say that set U ⊆ V is transient with starting point
s and endpoint u if U is connected and for each vertex v /∈ N(s) ∪N(u) we have that

(a) if v ∈ U , then at least two neighbours of v are also in U , and

(b) if v /∈ U , then at least two neighbours of v are also not in U .

The number of transient sets with a fixed starting point s also gives running time upper
bounds for TSP algorithms; intuitively, the transient sets are sets that can appear in the
Bellman–Held–Karp dynamic programming as the ground sets of partial solutions.

Dieter Kratsch

Upper bounds on the number of vertex subsets with property P

Let G = (V,E) be an undirected graph and P be a property of vertex subsets of graphs. We are
interested in #P (n) which is the maximum number of of subsets of property P in an n-vertex
graph. There is a trivial upper bound of #P (n) ≤ 2n. If P is the property of being a maximal
independent set, a maximal clique and a maximal vertex cover then #P (n) = 3n/3 and this result
is known since more than 50 years [14].

Recently motivated by interest in exact exponential algorithms to enumerate graphical objects
other properties like minimal dominating set, minimal connected dominating set, minimal con-
nected vertex cover, minimal feedback vertex set have been studied both for general graphs and
also for a variety of graph classes.

Here are some of the challenging open questions:

Let Pmcds(n) be the property of being a minimal connected dominating set. Improve upon the
trivial bound by showing that #Pmcds ≤ cn for some c < 2 either via a branching enumeration
algorithm or in a combinatorial (non-algorithmic) way.

Let Pmds(n) be the property of being a minimal dominating set. It is known that #Pmds on chordal
graphs is at most 1.6181n. No chordal graph with more than 3n/3 minimal dominating sets
is known. Find the exact value c such that Pmds(n) = cn on chordal graphs.
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Let Q be any MSOL property of a vertex set and P the property minl-Q or maxl-Q, i.e. a vertex
set has property P if it is a minimal (maximal) set with property Q. Develop possibly general
methods to lower or upper bound #P (n) on graphs of bounded treewidth. (Remark: Such
results are not even known for trees.)

Arnaud Mary

Enumeration of maximal stories

Let G := (B ∪W,A) be a bicolored digraph. A Story S is a partial subgraph that is a DAG and
such that each vertex of V (S) ∩W has at least one incoming arc and one outgoing arc in S.

Enumeration of maximal stories
input: A bicolored digraph G.
output: All maximal stories of G.

Comment:
This problem has applications in biology [16]. We don’t know the complexity of the problem.
It is closely related to the enumeration of the maximal DAG (or the minimal feedback arc sets)
of a digraph for which a polynomial delay algorithm can be found in [15]. Adding the degree
constraints on the white vertices seems to make the problem much harder.

Takeaki Uno

Maximal Irredundant Set Enumeration and Minimal Redundant Set
Enumeration

Let (V,F) be a hypergraph. For a hyperedge set S and its hyperedge F , a private neighbor of F
is a vertex of V such that v ∈ F and v 6 F ′ for any F ′ 6= F, F ′ ∈ S. S is said to be redundant If
some hyperedges of S have no private neighbor, and irredundant otherwise.

Problem: Maximal Irredundant Set Enumeration
For given hypergraph, enumerate all its maximal irredundant sets.

Problem: Minimal Redundant Set Enumeration
For given hypergraph, enumerate all its minimal redundant sets.

For the latter problem, in this workshop, we could find a simple proof such that any hypergraph
dualization problem can be reduced to this problem, so it is harder than the dualization.
Proof For given a hypergraph (U,H), we construct a hypergraph (V,F) such that V = U ∪ H
and any hyperedge H ′ of F is constructed from a hyperedge H ∈ H by adding the “vertex” H ∈ V
that is the hyperedge H in V . We further regard U as a hyperedge, and add it to F . Since vertex
H is included only in the hyperedge H ′, we can see that any redundant set H must include the
hyperedge U , and U has to have no private neighbor. Thus, any redundant set S of (V,F) satisfies
U ⊆

⋃
F∈S F . It implies that S corresponds to a hitting set in (U,H). There is a one to one

correspondence between minimal hitting sets in (U,H) and minimal redundant sets in (V,F).
In particular, we consider the problems on graph classes, by restricting the input hypergraphs

on the set of closed neighbors of all the vertices of a graph. We can then consider the problems
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on many graph classes. So the open problem is to clarify the difficulty of the problems in many
graph classes.

For both problems, at least, for interval graphs (circular arc graphs) and permutation graphs,
we can apply dynamic programming algorithms, as same as minimal dominating set enumeration.
We can also apply the same algorithm scheme as the minimal dominating set enumeration to
k-degenerate graphs, bounded tree-width, and bounded clique-width. The idea is in some sense
straightforward, but details are non-trivial. For split graphs, we can see that any maximal irre-
dundant set is a minimal dominating set, thus we can enumerate them in polynomial time delay.
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