

Accuracy Test of Software Architecture Compliance
Checking Tools – Test Instruction

Version 2

Dr. L.J. Pruijt
C. Köppe MSc.
Dr.ir. J.M.E.M. van der Werf
Prof.dr. S. Brinkkemper

Technical Report UU-CS-2015-020
December 2015

Department of Information and Computing Sciences
Utrecht University, Utrecht, The Netherlands
www.cs.uu.nl

2

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht

The Netherlands

3

Accuracy Test of Software Architecture Compliance
Checking Tools – Test Instruction
Version 2

Leo Pruijt, HU University of Applied Sciences, Utrecht, The Netherlands

Christian Köppe, HAN University of Applied Sciences, Arnhem, The Netherlands

Jan Martijn van der Werf and Sjaak Brinkkemper, University Utrecht, Utrecht, The Netherlands

Abstract
Software Architecture Compliance Checking (SACC) is an approach to verify conformance of

implemented program code to high-level models of architectural design. Static SACC focuses on the

modular software architecture and on the existence of rule violating dependencies between

modules. Accurate tool support is essential for effective and efficient SACC. This document describes

a test approach that may be used to determine how accurate a tested SACCT-tool is with respect to

dependency analysis and violation reporting. This technical report is intended as a test manual and

describes how a SACCT-tool can be tested. Two separate tests are described: the Benchmark test,

and the FreeMind test.

Table of Contents
1. Introduction ... 4

2. Benchmark Test – Instruction ... 5

2.1 Introduction ... 5

2.2 Direct Dependencies ... 7

2.3 Indirect Dependencies ... 10

3. Benchmark Test – Score Form – Read-only Version ... 13

3.1 Direct Dependencies: Summary - Dependency Detection and Violation Reporting 14

3.2 Direct Dependencies: Test Results - Expected Violations ... 15

3.3 Direct Dependencies: Test Results - Unexpected Violations .. 19

3.4 Indirect Dependencies: Summary - Dependency Detection and Violation Reporting 20

3.5 Indirect Dependencies: Test Results - Expected Violations .. 21

3.6 Indirect Dependencies: Test Results - Unexpected Violations .. 25

4. Freemind Test – Instruction .. 27

4.1 Introduction ... 27

4.2 Quantitative Test at Top-Package Level .. 28

4.3 Qualitative Test with Class ScriptingEngine .. 29

5. Freemind Test – Score Form – Read-only Version .. 33

4

1. Introduction
Software Architecture Compliance Checking (SACC) is an approach to verify conformance of

implemented program code to high-level models of architectural design. Static SACC focuses on the

modular software architecture and on the existence of rule violating dependencies between

modules. Accurate tool support is essential for effective and efficient SACC.

The objective of the full test in this report is to determine how accurate a tested SACCT-tool is with

respect to dependency analysis and violation reporting, by answering the following questions:

 Does the SACC-tool find all the dependencies between modules in the test software?

 Does the SACC-tool report all the violating dependencies in the test software?

 Does the SACC-tool report non-violating dependencies as violations?

 Does the SACC-tool report the exact type and location of violations and dependencies?

This document is intended as a test manual and describes how a SACCT-tool can be tested.

Two separate tests are described in this document: the Benchmark test, and the FreeMind test.

The following sections introduce these test and provide instructions on how to conduct the tests and

how to register the results.

The testware, program code and scoring documents, are downloadable (select “Download ZIP”) from

the following address:

https://github.com/SaccToolTests/SacctAccuracyTest

More information on the objectives of the SACC-tool accuracy test, the method, et cetera may be

found in the paper below. This paper also describes the test results of ten SACC-tools, which are

tested with this second version of the test.

 Pruijt, L., Köppe, C., Brinkkemper, S., and van der Werf, J. M. (2015).
The Accuracy of Dependency Analysis in Architecture Compliance Checking.
Submitted for publication.

The first version of this test was used to test seven SACC-tools. The paper describing this test and its

results is the following:

 Pruijt, L., Köppe, C., and Brinkkemper, S. (2013).
On the Accuracy of Architecture Compliance Checking: Accuracy of Dependency Analysis and
Violation Reporting.
In H. Kagdi, D. Poshyvanyk, & M. Di Penta (Eds.), 21st International Conference on Program
Comprehension (pp. 172–181). San Francisco, CA, USA: IEEE Computer Society Press.

https://github.com/SaccToolTests/SacctAccuracyTest

5

2. Benchmark Test – Instruction

2.1 Introduction
The Benchmark test is used to investigate if a SACC-tool is able to detect 34 different types of

dependency, and if it is able to report rule violating dependencies of these 34 types. The Java code of

the benchmark testware contains 25 different types of direct dependencies and 9 different types of

indirect dependencies.

The figure below shows the structure of the test code: the relevant packages and the dependencies

between them (the black, dashed lines; the number represents the number of detected

dependencies). The red, dotted lines show the focus of the test. They indicate that a number of

dependencies (the first number) of all the detected dependencies (the second number) violate an

architectural rule.

To measure the sensitivity (true positive rate) of the ACC tools, 64 cases are aimed at the detection

of true positives and false negatives.Package domain.direct.violating contains 34 classes with rule

violating direct dependencies on a class in library fi.foyt, or on classes in package technology.direct.

Furthermore package domain.indirect.violatingfrom contains 30 classes with rule violating indirect

dependencies on classes in package domain.indirect.indirectto or technology.direct.dao. Each class in

domain.direct.violating and domain.indirect.violatingfrom represents a test case for a specific type of

dependency.

A tested tool scores high on sensitivity in this test, if it is able to report all (or many of) the existing

dependencies and, if a rule forbids such a dependency, report these dependencies as violations.

To measure the false positive rate of the ACC tools, 64 cases are aimed at the detection of false

positives. Packages domain.allowed and domain.indirect.allowedfrom contain copies of the classes in

the corresponding violating packages, so dependencies to the same to-classes are contained. Since

no architectural rule constrains the classes in the “allowed” packages, reported violations of these

classes are qualified as false positives.

6

Note 1: Since SACC-tools differ considerably, the instructions on how to define modules, assign code

to these modules, define rules, et cetera, are described in general terms, and should be interpreted

as intended actions. Knowledge of the tested tool is required to use the available tool-options in

order to perform the intended actions.

Note 2: The diagrams are constructed with HUSACCT_4.4. More information on HUSACCT in:

Pruijt, L., Köppe, C., van der Werf, J. M., and Brinkkemper, S. (2014).

HUSACCT: Architecture Compliance Checking with Rich Sets of Module and Rule Types.

In Proceedings of the 29th ACM/IEEE international conference on Automated software engineering -

ASE ’14 (pp. 851–854). ACM Press.

Note 3: The names of the top-pckages domain and technology are what they are for historical

reasons, but currently have no meaning.

Note 4: To reduce the dependencies between a from-class and to-class per test case as much as

possible to only the dependency of the type specific for a test case, the Base class has been

introduced. The Base class is a super class of many test case specific from-classes. The Base class,

visible in the figure below, declares many vatiables needed for the test cases. The resulting

dependencies of type Import and Declaration are on the Base class and not on the specific test case

class. The variables are available via inheritance to the subclasses. We have verified that this

construction does not influence the test results, and it did not; all tested tools in the published

papers were able to determine the type of an inherited variable.

Within package domain.indirect, class BaseIndirect has the same function within this package.

7

2.2 Direct Dependencies

2.2.1 Introduction

Detection of the following direct dependency types is tested in this section.

PRT Category Dependency Types

1 Call Instance method

 instance method, inherited

 Class method

 Constructor

 Inner class method

 Interface method

 Library class method

2 Access Instance variable (read/write)

 Instance variable, inherited

 Class variable

 Class variable, constant

 Class variable, interface

 Enumeration

 Object reference, ref. variable

 Object reference, var within if

3 Inheritance Extends class

 Extends abstract class

 Implements interface

4 Declaration (type) Instance variable

 Class variable

 Local variable

 Parameter

 Return type

 Exception

 Type cast

5 Annotation Class annotation

6 Import Class import

2.2.2 Test Procedure

1) Download the test code and score sheet of the benchmark test

In the BenchmarkTest directory a zip with the test code is available, as well as a writeable version of

the score form. Extract the test code files. Java files as well as the class files are available in

respectively the src and bin subdirectories.

8

2) Analyse the code

Activate the SACC-tool to analyse the code in the src or bin subdirectories (or both).

3) Define the modules and assign code packages.

Define the following three modules (of the specified module type, if possible).

Next, assign the corresponding packages in the code to the modules.

Module Module
Type

Assigned Code Package

DomainDirectViolating Subsystem domain.direct.violating

TechnologyDirect Subsystem technology.direct (including both subpackages)

FoursquareAPI Library fi.foyt.foursquare.api
Or to: fi.foyt.foursquare.api.* (or a tool specific RegEx)
The jar can be found in the lib folder.

Package domain.direct.violating contains 34 classes. A class name indicates a specific type of

dependency included in the class.

4) Inspect the detected dependencies between the packages.

Open the writeable score form of the benchmark test and make use of section “Direct Dependencies:

Test Results - Expected Violations”. (Note: A read-only version is available in the next section of this

document).

In the table, 34 test cases are specified and for each test case is described which dependencies are

present between a from-class (in package domain.direct.violating) and a to-class. The name of the

9

from-class includes the specific dependency type of the test case.

Check if the (specific) dependency is reported by the tool.

For each test case:

1. Register the result in the column “Dependency detected?”. Check the detection of all the

dependencies per test case. Mark a “+” if the type specific to the test case is detected, or a “-“ if

not. Make a note (in Comment), when a dependency is not detected.

2. Gather evidence, e.g.: 1) Generate or create a report with all the detected dependencies

between domain and technology; 2) Screenshots; or 3) diagrams.

5) Define the rules.

Architectural rule

domain.direct.violating is not allowed to use technology.direct.

domain.direct.violating is not allowed to use foursquareapi.jar.

Note: The rules are based on the Non-Restricting Principle (dependencies are allowed, except when

explicitly forbidden). Consequently, when a tool is based on the Restricting Principle (no

dependencies are allowed, except when explicitly specified), the rules have to be specified

differently, to gain the intended result.

Otherwise, more violations are reported than expected by the test cases, since each dependency

which is not explicitly allowed is reported as a violation.

6) Activate the Architecture Compliance Check.

7) Inspect the reported violations.

Re-iterate and inspect as described under “Inspect the detected dependencies between the

packages”, but now for dependencies reported as violations.

For each test case:

1. Register the result in the column “Violation reported?”.

2. Gather evidence.

8) Inspect and register not-expected violations.

If violations are be reported from classes in domain.direct.allowed, register them in the table under

“Direct Dependencies: Test Results - Unexpected Violations”. These violations should be regarded as

false positives. Gather evidence.

9) Summarize the results to performance per dependency type

Fill-in the table under “Direct Dependencies: Summary - Dependency Detection and Violation

Reporting”.

For each dependency type, determine if the tool is able to detect/report dependencies and

violations, based on the results from the previous steps (+ = detected; ± = partially detected (explain

in comment); - = not detected). The class names indicate the related dependency types. Multiple test

cases (classes) may be used to test a dependency type.

2.3 Indirect Dependencies

2.3.1 Test Procedure

1) Define the modules and assign code packages.

Define the following three modules.

Next, assign the corresponding packages in the code to the modules.

Module Module Type Map to Code

DomainIndirectViolatingFrom Subsystem domain.indirect.violatingfrom

DomainIndirectIndirectTo Subsystem domain.indirect.indirectto

TechnologyDirectDao Subsystem technology.direct. dao

2) Inspect the detected dependencies between the packages specified in the architectural rules.

Open the score form of the benchmark test and make use of section “Indirect Dependencies: Test

Results - Expected Violations”.

In the table, 30 test cases are specified and for each test case is described which dependencies are

present between a from-class (in package domain.indirect.violatingfrom) and a to-class. The name of

the from-class includes the specific dependency type of the test case.

Check if the (specific) dependency is reported by the tool.

For each test case:

1. Register the result in the column “Dependency detected?”. Check the detection of all the

dependencies per test case. Mark a “+” if the type specific to the test case is detected, or a “-“ if

not. Make a note (in Comment), when a dependency is not detected.

Dependencies to classes in package domain.indirect.intermediate or technology.direct.subclass

do not count as indirect dependencies.

2. Gather evidence, e.g.: 1) Generate or create a report with all the detected dependencies

between domain and technology; 2) Screenshots; or 3) diagrams.

3) Define the rules.

Architectural rule

domain.indirect.violatingfrom is not allowed to use domain.indirect.indirectto

domain.indirect.violatingfrom is not allowed to use technology.direct.dao

4) Activate the Architecture Compliance Check.

5) Inspect the reported violations.

The test cases include dependencies from a class in package domain.indirect.violatingfrom to a class

in package domain.indirect.violatingto. Except when specified differently: four test cases in

domain.indirect.violatingfrom make violating use of a class in technology.direct.dao.

All these dependencies should be reported as violations.

For each test case:

1.1. Register the result in the column “Violation reported?”.

1.2. Gather evidence.

11

6) Inspect and register not-expected violations.

If violations are be reported from classes in domain.direct.allowed, register them in the table under

“Indirect Dependencies: Test Results - Unexpected Violations”. These violations should be regarded

as false positives. Gather evidence.

7) Summarize the results

Fill-in the table under “Indirect Dependencies: Summary - Dependency Detection and Violation

Reporting”.

For each dependency type, determine if the tool is able to detect/report dependencies and

violations, based on the results from the previous steps (+ = detected; ± = partially detected (explain

in comment); - = not detected). The class names indicate the related dependency types. Multiple test

cases (classes) may be used to test a dependency type.

3. Benchmark Test – Score Form – Read-only Version

SACCT Benchmark Test: <Tool Name>

Accuracy of Dependency Detection

Direct dependencies
Indirect dependencies

Name of the tool: x

Version: y

Website: z

End date test: d

© HU University of Applied Sciences, Utrecht, The Netherlands; Leo Pruijt

Information Systems Architecture Research Group

14

3.1 Direct Dependencies: Summary - Dependency Detection and Violation Reporting

Summary of the findings from the test: + = detected; ± = partially detected (explanation in comment); - = not detected.

Category Dependency Types Dependency
detected

Violation
reported

Comment

1 Call Instance method

 instance method, inherited

 Class method

 Constructor

 Inner class method

 Interface method

 Library class method

2 Access Instance variable

 Instance variable, constant

 Instance variable, inherited

 Class variable

 Class variable, constant

 Class variable, interface

 Enumeration

 Object reference, ref. variable

 Object reference, var within if

3 Inheritance Extends class

 Extends abstract class

 Implements interface

4 Declaration (type) Instance variable

 Class variable

 Local variable

 Parameter

 Return type

 Exception

 Type cast

5 Annotation Class annotation

6 Import Class import

15

3.2 Direct Dependencies: Test Results - Expected Violations
The following test cases all include dependencies:

From a class in: domain.direct.violating

To a class in: technology.direct.dao

Except when specified differently: four test cases make use of technology.direct.subclass.

Test cases per Dependency type Dependencies Dependency
detected?
+(Yes), -(No)

Violation
reported?
+(Yes), -(No)

Comment

Access

Type: Access – Class variable
From: AccessClassVariable
To: CheckInDAO

1-Import
2-Access- class variable

Type: Access – Class variable - Constant
From: AccessClassVariableConstant
To: UserDAO

1-Import
2-Access- class -constant

Type: Access – Class variable - Interface
From: AccessClassVariableInterface
To: ISierraDAO

1-Import
2-Access-class variable-
interface

Type: Access – Enumeration
From: AccessEnumeration
To: TipDAO

1-Import
2-Access-Enumeration

Type: Access – Instance variable – Read
From: AccessInstanceVariableRead
To: ProfileDAO

1-Access-instance var.

Type: Access – Instance variable – Write
From: AccessInstanceVariableWrite
To: ProfileDAO

1-Access-instance var.

Type: Access – Instance variable - Constant
From: AccessInstanceVariableConstant
To: UserDAO

1-Access-instance-constant

Type: Access – Instance variable – Inherited
From: AccessInstanceVariableSuperClass
To: technology.direct.subclass.CallInstanceSubClassDOA.
VariableOnSuperClass
Note: Also OK if access to
technology.direct.dao.CallInstanceSuperClassDAO is
reported. Write as comment the reported class(es).

1- Access-instance -
inherited

16

Type: Access – Instance variable – Inherited of 2nd super cl.
From: AccessInstanceVariableSuperSuperClass
To:
technology.direct.subclass.CallInstanceSubSubClassDOA
Note: Also OK if access to
technology.direct.subclass.CallInstanceSubClassDOA or
technology.direct.dao.CallInstanceSuperClassDAO is
reported. Write a comment!

1- Access-instance -
inherited

Type: Access – Object reference – Ref.Variable - Parameter
From: AccessObjectReferenceAsParameter
To: ProfileDAO

1-Access-object ref-param

Type: Access – Object reference – Ref.Variable – If exists
From: AccessObjectReferenceWithinIfStatement
To: ProfileDAO

1-Access-object ref-in if

Annotation

Type: Class annotation
From: AnnotationDependency
To: SettingsAnnotation

1-Import
2-Annotation

Call

Type: Call – Class method
From: CallClassMethod
To: BadgesDAO

1-Import
2- Call-class method

Type: Call – Constructor
From: CallConstructor
To: AccountDAO

1-Import
2- Call-constructor

Type: Call – Constructor – Library class
From: CallConstructorLibraryClass
To: fi.foyt.foursquare.api.FoursquareApi

1-Import 2x
2- Call-constructor-library

Type: Call – Instance method
From: CallInstance
To: ProfileDAO

1- Call-instance

Type: Call – Instance method – Inner class
From: CallInstanceInnerClass
To: CallInstanceInnerClassDAO within
CallInstanceOuterClassDAO

1-Call-instance-inner class

17

Type: Call – Instance method - Interface
From: CallInstanceInterface
To: CallInstanceInterfaceDAO

1-Call-instance-interface

Type: Call – Instance method – Library class
From: CallInstanceLibraryClass
To: fi.foyt.foursquare.api.FoursquareApi

1- Call-instance-library

Type: Call – Instance method – Inherited (Virtual call)
From: CallInstanceSuperClass
To: technology.direct.subclass.CallInstanceSubClassDOA
Note: Also OK if a call to
technology.direct.dao.CallInstanceSuperClassDAO is
reported. Write as comment the reported class(es).

1- Call-instance-inherited

Type: Call – Instance method – Inherited of 2nd super class
From: CallInstanceSuperSuperClass
To:
technology.direct.subclass.CallInstanceSubSubClassDOA
Note: Also OK if a call to
technology.direct.subclass.CallInstanceSubClassDOA or
technology.direct.dao.CallInstanceSuperClassDAO is
reported. Write a comment!

1- Call-instance- inherited

Declaration (of type)

Type: Declaration – Exception (throws)
From: DeclarationExceptionThrows
To: StaticsException

1-Import
2-Declaration-exception
3- Call-constructor (throw
new)

Type: Declaration -Parameter
From: DeclarationParameter
To: ProfileDAO

1-Import
2-Declaration-param.

Type: Declaration – Return type
From: DeclarationReturnType
To: VenueDAO

1-Import
2-Declaration-return type

Type: Declaration – Type cast
From: DeclarationTypeCast
To: ProfileDAO

1-Import
2-Declaration- type cast

Type: Declaration – Type cast – Within argument section
From: DeclarationTypeCastOfArgument
To: ProfileDAO

1-Import
2-Declaration- type cast

18

Type: Declaration – Variable – Instance
From: DeclarationVariableInstance
To: ProfileDAO

1-Import
2-Declaration-variable

Type: Declaration – Variable – Local
From: DeclarationVariableLocal
To: ProfileDAO

1-Import
2-Declaration-variable

Type: Declaration – Variable – Local - Initialized
From: DeclarationVariableLocal_Initialized
To: ProfileDAO

1-Import
2-Declaration-variable

Type: Declaration – Variable – Static
From: DeclarationVariableStatic
To: ProfileDAO

1-Import
2-Declaration-variable

Import

Type: Class import - Unused
From: ImportDependencyUnused
To: AccountDAO

1-Import

Inheritance

Type: Inheritance – Extends class
From: InheritanceExtends
To: HistoryDAO

1-Import
2- Inheritance-extends

Type: Inheritance – Extends class – Abstract class
From: InheritanceExtendsAbstractClass
To: FriendsDAO

1-Import
2- Inheritance-extends-
abstract

Type: Inheritance – Implements interface
From: InheritanceImplementsInterface
To: IMapDAO

1-Import
2-Inheritance-interface

3.2.1 Gathered Evidence Direct Dependencies: Expected

…

19

3.3 Direct Dependencies: Test Results - Unexpected Violations
No violating dependencies should be reported between:

From: domain.direct.allowed

To: technology.direct.dao

If an unexpected violation is reported, make a note in the table below.

Test cases Dependencies Dependency
detected?
+(Yes), -(No)

Violation
reported?
+(Yes), -(No)

Comment

Type:
From:
To:

3.3.1 Gathered Evidence Direct Dependencies: Unexpected

…

20

3.4 Indirect Dependencies: Summary - Dependency Detection and Violation Reporting

Summary of the findings from the test: + = detected; ± = partially detected (explanation in comment); - = not detected.

Category Dependency Types Dependency
detected

Violation
reported

Comment

1 Call Instance method

 Instance method, inherited

 Class method

2 Access Instance variable

 Instance variable, inherited

 Class variable

 Object reference – Reference variable

 Object reference – Return value

3 Inheritance Extends - extends

 Extends - implements

 Implements - extends

21

3.5 Indirect Dependencies: Test Results - Expected Violations
The following test cases all include dependencies:

From a class in: domain.indirect.violatingfrom

Via a class in: domain.indirect.intermediate

To a class in: domain.indirect.violatingto

Except when specified differently: four test cases in domain.indirect.violatingfrom make use of technology.direct.dao.

Test cases per Dependency type Dependencies Dependency
detected?
+(Yes), -(No)

Violation
reported?
+(Yes), -(No)

Comment

Access

Type: Access – Instance variable
From: AccessInstanceVariableIndirect_MethodVar
Via: BackgroundService.getServiceOne()
To: ServiceOne.name

1- Access -
Instance

Type: Access – Instance variable
From: AccessInstanceVariableIndirect_VarVar
Via: BackgroundService.serviceOne
To: ServiceOne.name

1- Access-
Instance

Type: Access – Instance variable
From: AccessInstanceVariableIndirect_VarVarToString
Via: BackgroundService.serviceOne
To: ServiceOne.day

1- Access -
Instance

Type: Access – Instance variable – Double indirect
From: AccessInstanceVariableIndirectIndirect_MethodVarVar
Via: BackgroundService.getServiceTwo()
Via: ServiceTwo.serviceOne
To: ServiceOne.name

1- Access -
Instance

Type: Access – Instance variable – Double indirect
From: AccessInstanceVariableIndirectIndirect_VarVarVar
Via: BackgroundService.serviceTwo
Via: ServiceTwo.serviceOne
To: ServiceOne.name

1- Access -
Instance

Type: Access – Instance variable – Inherited
From: AccessInstanceVariableIndirect_SuperClass
Via: technology.direct.subclass.CallInstanceSubClassDOA
To: CallInstanceSuperClassDAO.VariableOnSuperClass
Note: Only OK if access to the super class is reported.

1-Access-
instance-
inherited

 To: Technology.Direct.Dao contains ServiceTwo

22

Type: Access – Instance variable – Inherited of 2nd super class
From: AccessInstanceVariableIndirect_SuperSuperClass
Via: technology.direct.subclass.CallInstanceSubSubClassDOA and
technology.direct.subclass.CallInstanceSubClassDOA
To: CallInstanceSuperClassDAO.VariableOnSuperClass
Note: Only OK if access to the super class is reported.

1-Access-
instance-
inherited

 To: Technology.Direct.Dao contains ServiceTwo

Type: Access – Object reference – Reference Variable
From: AccessObjectReferenceIndirect_AsParameter_POI
Via: ServiceTwo.getServiceOne() and ServiceOne.poi
To: POI

1- Access –Object
reference

Type: Access – Object reference – As return value
From: AccessObjectReferenceIndirect_AsParameter
Via: ServiceTwo.getServiceOne()
To: ServiceOne

1- Access –Object
reference

Type: Access – Object reference – Reference Variable
From: AccessObjectReferenceIndirect_WithinIfStament_POI
Via: ServiceTwo.getServiceOne() and ServiceOne.poi
To: POI

1- Access –Object
reference

Type: Access – Object reference – As return value
From: AccessObjectReferenceIndirect_WithinIfStament
Via: ServiceTwo.getServiceOne()
To: ServiceOne

1- Access –Object
reference

Type: Access – Static variable
From: AccessStaticVariableIndirect_MethodVar
Via: BackgroundService.getServiceOne()
To: ServiceOne.sName

1- Access -Static

Type: Access – Static variable
From: AccessStaticVariableIndirect_VarVar
Via: BackgroundService.serviceOne
To: ServiceOne.sName

1- Access -Static

Type: Access – Static variable
From: AccessStaticVariableIndirect_VarVarToString
Via: BackgroundService.serviceOne
To: ServiceOne.sName

1- Access -Static

Type: Access – Static variable – Double indirect
From: AccessStaticVariableIndirectIndirect_MethodVarVar
Via: BackgroundService.getServiceTwo()

1- Access -Static

23

Via: ServiceTwo.serviceOne
To: ServiceOne.sName

Type: Access – Static variable – Double indirect
From: AccessStaticVariableIndirectIndirect_VarVarVar
Via: BackgroundService.serviceTwo
Via: ServiceTwo.serviceOne
To: ServiceOne.sName

1- Access -Static

Call

Type: Call – Instance method
From: CallInstanceMethodIndirect_MethodMethod
Via: BackgroundService.serviceOne
To: ServiceOne.getName()

1- Call-Instance

Type: Call – Instance method
From: CallInstanceMethodIndirect_MethodMethodToString
Via: BackgroundService.getServiceOne()
To: ServiceOne.getDay()

1- Call-Instance

Type: Call – Instance method
From: CallInstanceMethodIndirect_MethodMethod_ViaConstructor
Via: new BackgroundService.getServiceOne()
To: ServiceOne.getName()

1- Call-Instance

Type: Call – Static method
From: CallInstanceMethodIndirect_StaticMethodInstanceMethod
Via: BackgroundService.getServiceOneviaStaticAttribute()
To: ServiceOne.getName()

1-Call-Instance

Type: Call – Instance method – Inherited (Virtual call)
From: CallInstanceMethodIndirect_SuperClass
Via: CallInstanceSubClassDOA
To: CallInstanceSuperClassDAO.MethodOnSuperClass()
Note: Only OK if a call to the super class is reported.

1-Call-instance-
inherited

 To: Technology.Direct.Dao contains ServiceTwo

Type: Call – Instance method – Inherited of 2nd super class
From: CallInstanceMethodIndirect_SuperSuperClass
Via: CallInstanceSubSubClassDOA and CallInstanceSubClassDOA
To: CallInstanceSuperClassDAO.MethodOnSuperClass()
Note: Only OK if a call to the super class is reported.

1-Call-instance-
inherited

 To: Technology.Direct.Dao contains ServiceTwo

Type: Call – Instance method
From: CallInstanceMethodIndirect_VarMethod
Via: BackgroundService.serviceOne
To: ServiceOne.getName()

1- Call-Instance

24

Type: Call – Instance method – Double indirect
From: CallInstanceMethodIndirectIndirect_MethodVarMethod
Via: BackgroundService.getServiceTwo()
Via: ServiceTwo.serviceOne
To: ServiceOne.getName()

1- Call-Instance

Type: Call – Instance method – Double indirect
From: CallInstanceMethodIndirectIndirect_VarVarMethod
Via: BackgroundService.serviceTwo
Via: ServiceTwo.serviceOne
To: ServiceOne.getName()

1- Call-Instance

Type: Call – Static method
From: CallStaticMethodIndirect_MethodStaticMethod
Via: BackgroundService.getServiceOne()
To: ServiceOne.getsName()

1- Call-Instance

Type: Call – Static method
From: CallStaticMethodIndirect_VarStaticMethod
Via: BackgroundService.serviceOne
To: ServiceOne.getsName()

1- Call-Instance

Inheritance

Type: Inheritance – Extends -extends
From: InheritanceExtendsExtendsIndirect
Via: MapsService (extends POI)
To: POI

1- Inheritance-
extends

Type: Inheritance – Extends - implements
From: InheritanceExtendsImplementsIndirect
Via: Whrrl (implements IPreferences)
To: IPreferences

1-Inheritance-
implements

Type: Inheritance – Implements - extends
From: InheritanceImplementsExtendsIndirect
Via: IWhrrl (extends IPreferences)
To: IPreferences

1- Inheritance-
extends

3.5.1 Gathered Evidence Indirect Dependencies: Expected

25

…

3.6 Indirect Dependencies: Test Results - Unexpected Violations
No violations are expected from domain.indirect.allowedfrom to:

 domain.indirect.indirectto

 technology.direct.dao

If an unexpected violation is reported, make a note in the table below.

Test cases Dependencies Dependency
detected?
+(Yes), -(No)

Violation
reported?
+(Yes), -(No)

Comment

Type:
From:
To:

3.6.1 Gathered Evidence Indirect Dependencies: Unexpected

…

26

27

4. Freemind Test – Instruction

4.1 Introduction
The Freemind test complements the custom made benchmark test. Freemind, a mind-mapping tool,

is a freely available open source system, developed in Java. The Freemind test is aimed at

quantitative and qualitative tool evaluation with respect to the accuracy of dependency detection

and violation reporting.

The figure below shows the three top-level packages in Freemind: accessories, plugins and freemind.

The figure shows also subpackages with their dependency relations, as depicted by the SAVE tool.

Thick lines represent more dependency relations than thin lines.

4.1.1 Code Files and Excluded Packages

Freemind version 0.9.0 is used in the test, which we retrieved on 23-08-2012 from

http://freemind.sourceforge.net/wiki/index.php/Download.

Since some packages are only available in the source code and not in the compiled version, they are

excluded from the test. These packages are: plugins.latex.*, plugins.collaboration.*, and tests.*.

4.1.2 Two Types of Tests

Two types of tests may be executed: 1) a quantitative test to determine the number of reported

dependencies and violations at top-package level; 2) a qualitative test to determine the capability of

a tool to report the (violating) dependencies within the large class plugins.script.ScriptingEngine to

package freemind. This class was selected for the test, since it contains a rich variety of dependency

types.

28

4.2 Quantitative Test at Top-Package Level

1) Download the test code and score sheet of the Freemind test

Extract the zip file with the code: FreemindTest_TestCodeFiles_bin_en_src.zip. The java files as well

as the class files are available in the zip.

The relevant Java class files are in: freemind-bin.

The relevant Java source files are in: freemind-src.freemind (accessoires, freemind, plugins).

2) Determine the number of reported dependencies

Analyse the Java source files or class files.

Thereafter:

1. Determine the number of reported dependencies between the following packages:
a. plugins -> freemind
b. accessories -> freemind

2. Register the number of dependencies in Table 1.

Note 1: Table 1-3 below are available in a writeable file: Freemind Test – Summary Tables.docx.

Note 2: When options are available to analyze the code at different granularity levels, choose the

most detailed option.

3) Define the rules

Specify the following architectural rules:

1. Package accessories is not allowed to use package freemind.

2. Package plugins is not allowed to use package freemind.

Note: Not allowed to use rules can be checked by all the tools we have studied so far, but the way

how the rule should be specified may be very tool specific.

4) Activate the Conformance Check

Note: When options are available to analyse the code at different granularity levels, or to report

violations to the defined rules at different granularity levels, choose the most detailed option.

5) Register the Number of Violations

Determine the number of reported violations against the defined rules and register them in table 1.

Table 1: Reported dependencies and violations at top-package level

 <insert Tool name here>

Dep: plugins -> freemind

Dep: accessories -> freemind

Dep: Total

Viol: plugins->freemind

Viol: accessoriess->freemind

Viol: Total

29

4.3 Qualitative Test with Class ScriptingEngine
Objective: Determine the type and number of the reported violating dependencies from class

plugins.script.ScriptingEngine to package Freemind.

1) Define the Rules

1. Delete the rules from the previous test.
2. Add the rule: Class plugins.script.ScriptingEngine is not allowed to use package freemind.

Note: This rule, and the rules from the previous test, are no “real” architectural rules (e.g. as defined

in a software architecture document of Freemind), but are defined by ourselves in line with the

objectives of the tests.

2) Activate the Conformance Check

Run the compliance check and store the results.

3) Analyze the results

1. Open a writeable version of “Freemind Test - Score Form - ScriptingEngine-Violating
Dependencies-Version 2.xlsx”. (Note: A read-only version is available in the next section of this
document).

2. Map the reported violations to the dependencies as described in the score form.
2.1. Determine which dependencies are covered by the reported violations. Mark them with a

“+” (or with “1”) in the column “Violation Reported”. Furthermore, make a note in the
column “Reported as” of the type as reported by the tool.

2.2. Determine which dependencies are not reported by the tool. Mark them with a “-” (or with
a “0”) in the column “Violation Reported”.

Note: If the violations are reported only at a high level of abstraction (e.g., only at the level of from-

class, to-class), while the SACC-tool provides other reports, browsers, et cetera, that show

dependency messages at a lower level of abstraction, than make use of these facilities to score.

4) Summarize the results

1. Determine which dependency types are reported and register the results in table 2. If some
dependencies of the same type are detected, while others are not, study the differences and
determine the cause. We refer to our published studies for examples of differences and causes.

2. Determine the classes in the freemind top package reported as used by class ScriptingEngine.
Register them in table 3.

30

Table 2: Reported dependencies per dependency type

Dependency type
 (number of constructs)

 N
u

m
b

er o
f

 D
e

p
en

d
en

cies
 R

e
p

o
rte

d
 b

y

 To
o

l X

Import

Class import (10)

Declaration

Local variable (6)

Parameter (7)

Type cast (2)

Call

Instance method (11)

Instance method-inherited (14)

Class method (6)

Constructor (3)

Inner class method (instance) (2)

Interface method (19)

Access

Constant variable (12)

Object reference (16)

Inheritance

Extends class (1)

Detected (109)

Sensitivity (in %) (average = 72)

31

Table 3: Detected and not-detected depended-upon classes

Depended-Upon Classes

 N
u

m
b

er o
f

 D
e

p
en

d
en

cies

 N
u

m
b

er o
f

 D
e

p
en

d
en

cies
 R

e
p

o
rte

d
 b

y
 To

o
l X

Classes

freemind.common.OptionalDontShowMeAgainDialog 5

freemind.controller.Controller 1

freemind.extensions.HookAdapter 6

freemind.main.FreeMind 12

freemind.main.FreeMindMain 16

freemind.main.FreeMindSecurityManager 5

freemind.main.Resources 2

freemind.main.Tools 6

freemind.modes.attributes.NodeAttributeTableModel 6

freemind.modes.ControllerAdapter 5

freemind.modes.MindMap 1

freemind.modes.mindmapmode.hooks.MindMapHookAdapter 5

freemind.modes.mindmapmode.MindMapController 6

freemind.modes.MindMapNode 17

freemind.modes.ModeController 2

Inner Classes

OptionalDontShowMeAgainDialog$StandardPropertyHandler 1

freemind.main.Tools.BooleanHolder 13

Total 109

4.3.1 Scoring Notes

1. ScriptingEngine depends-upon the classes drawn in the freemind package in the diagram
below, and on inner classes of these classes. This diagram helps to interpret the reported
dependencies or violations, especially in case of a call of an inherited method or an access of
an inherited attribute. Two classes contain inner classes, which are also used by
ScriptingEngine, namely OptionalDontShowMeAgainDialogue and Tools. Please note that the
figure provides a simplified view. There are many more classes in package freemind, and the
shown classes are in reality included in different subpackages. Furtermore, for reasons of
readability, we have no dependency arrows drawn in the diagram, only UML inheritance
relations (generalizations and implementations).

32

2. We included a method call as one dependency in the score form, but more dependencies will
be reported by some tools, e.g. if a tool reports the class reference and the method (or new)
as two dependencies.

3. How hard it is to relate violation/dependency messages to the dependencies at code-level
depends on the accuracy of the tool-output. When tools report dependencies at from-class,
to-class level only, it is not possible to perform this test.

4. We scored mildly in our studies (published in the papers mentioned in the introduction
section), meaning that we marked a dependency as detected, if one of the reported
dependency messages could be related to the dependency-causing code construct. With a
strict accuracy level in mind, the number of missed dependencies would have been higher.
o In case of inner class related dependencies we scored a dependency also to be detected,

if it was reported as a dependency to the outer class instead of to the inner class.
o In case of inheritance related dependencies we scored a dependency also to be detected,

if it was reported as a dependency to a sub class instead of the super class that actually
implemented a depended-upon variable or method.

o In case of dependency messages with a non-optimal accuracy, we scored all dependencies
to be detected that could be related to the dependency message. For instance, if a tool
reported one dependency to class X of type declaration or access at line Y, while in the
source code a declaration construct and a type cast construct were present, both were
scored to be detected. Similarly, if a tool reported one dependency to class X of type
access in method Z, while in the source code of the method five of these access construct
were present, all five were scored to be detected.

5. Freemind Test – Score Form – Read-only Version
plugins.script.ScriptingEngine

 Violation

Id Line Type Direct Target Reported Reported as Comment

1 39 Import freemind.common.OptionalDontShowMeAgainDialog freemind.common.OptionalDontShowMeAgainDialog

2 40 Import freemind.main.FreeMind freemind.main.FreeMind

3 41 Import freemind.main.FreeMindMain freemind.main.FreeMindMain

4 42 Import freemind.main.FreeMindSecurityManager freemind.main.FreeMindSecurityManager

5 43 Import freemind.main.Tools freemind.main.Tools

6 44 Import freemind.main.Tools.BooleanHolder freemind.main.Tools.BooleanHolder (inner class, static)

7 45 Import freemind.modes.MindMapNode freemind.modes.MindMapNode

8 46 Import freemind.modes.attributes.NodeAttributeTableModel freemind.modes.attributes.NodeAttributeTableModel

9 47 Import freemind.modes.mindmapmode.MindMapController freemind.modes.mindmapmode.MindMapController

10 48 Import freemind.modes.mindmapmode.hooks.MindMapHookAdapter freemind.modes.mindmapmode.hooks.MindMapHookAdapter

11 58 Inheritance-Extends Direct freemind.modes.mindmapmode.hooks.MindMapHookAdapter extends MindMapHookAdapter

12 68 Call-Instance-Inherited Indirect freemind.extensions.HookAdapter calls super.startupMapHook() in freemind.extensions.HookAdapter.startupMapHook()

13 69 Declaration-Local Variable freemind.modes.MindMapNode MindMapNode node = …

14 69 Call-Instance-Inherited Indirect freemind.modes.mindmapmode.hooks.MindMapHookAdapter getMindMapController() in freemind.modes.mindmapmode.hooks.MindMapHookAdapter (super class)

15 69 Call-Instance-Inherited Indirect freemind.modes.ControllerAdapter getMindMapController().getMap().getRootNode() in freemind.modes.ControllerAdapter

16 69 Call-Interface Indirect freemind.modes.MindMap getMindMapController().getMap().getRootNode() in freemind.modes.MindMap

17 70 Declaration-Local Variable freemind.main.Tools.BooleanHolder BooleanHolder booleanHolder = ... from freemind.main.Tools (static class)

18 70 Call-Constructor-Inner class Direct freemind.main.Tools.BooleanHolder ... = new BooleanHolder(FALSE)

19 72 Call-Instance-Inherited Indirect freemind.extensions.HookAdapter freemind.extensions.MindMapHook

20 74 Access-Object Reference-Parameter Direct freemind.modes.MindMapNode node from MindMapNode

21 74 Access-Object Reference-Parameter Direct freemind.main.Tools.BooleanHolder booleanHolder from BooleanHolder

22 78 Access-Object Reference-Parameter Direct freemind.modes.MindMapNode node from MindMapNode

23 78 Access-Object Reference-Parameter Direct freemind.main.Tools.BooleanHolder booleanHolder from BooleanHolder

24 82 Declaration-Parameter freemind.modes.MindMapNode pNode from MindMapNode

25 82 Declaration-Parameter freemind.main.Tools.BooleanHolder pBooleanHolder from BooleanHolder

26 84 Call-Instance-Inherited Indirect freemind.extensions.HookAdapter getPluginBaseClass() from freemind.extensions.HookAdapter

27 85 Call-Class Direct freemind.main.Tools Tools.getFile(...) from freemind.main.Tools (static class)

28 89 Access-Object Reference-Parameter Direct freemind.modes.MindMapNode pNode from MindMapNode in executeScript(pNode, pBooleanHolder, ...

29 89 Access-Object Reference-Parameter Direct freemind.main.Tools.BooleanHolder pBooleanHolder from BooleanHolder in executeScript(pNode, pBooleanHolder,...

30 90 Call-Instance-Inherited Indirect freemind.modes.mindmapmode.hooks.MindMapHookAdapter getMindMapController() in freemind.modes.mindmapmode.hooks.MindMapHookAdapter

34

31 96 Declaration-Parameter freemind.modes.MindMapNode node from MindMapNode

32 97 Declaration-Parameter freemind.main.Tools.BooleanHolder pAlreadyAScriptExecuted from BooleanHolder

33 98 Call-Instance-Inherited Indirect freemind.extensions.HookAdapter getController() in freemind.extensions.HookAdapter

34 98 Call-Interface Indirect freemind.modes.ModeController getController().getFrame().setWaitingCursor(true) in freemind.modes.ModeController

35 98 Call-Interface Indirect freemind.main.FreeMindMain getController().getFrame().setWaitingCursor(true) in freemind.main.FreeMindMain

36 100 Call-Interface Direct freemind.modes.MindMapNode node.childrenUnfolded()

37 101 Declaration-Local Variable freemind.modes.MindMapNode MindMapNode element =

38 101 Declaration-Type cast freemind.modes.MindMapNode = (MindMapNode) iter.next();

39 102 Access-Object Reference-Parameter Direct freemind.modes.MindMapNode performScriptOperation(element, pAlreadyAScriptExecuted)

40 102 Access-Object Reference-Parameter Direct freemind.main.Tools.BooleanHolder performScriptOperation(element, pAlreadyAScriptExecuted)

41 104 Declaration-Local Variable freemind.modes.attributes.NodeAttributeTableModel NodeAttributeTableModel attributes = from freemind.modes.attributes

42 104 Call-Interface Direct freemind.modes.MindMapNode = node.getAttributes()

43 105 Access-Object Reference Direct freemind.modes.attributes.NodeAttributeTableModel if (attributes == null)

44 107 Call-Instance Direct freemind.modes.attributes.NodeAttributeTableModel attributes.getRowCount()

45 108 Call-Instance Direct freemind.modes.attributes.NodeAttributeTableModel attributes.getName(row)

46 109 Call-Instance Direct freemind.modes.attributes.NodeAttributeTableModel attributes.getValue(row)

47 113 Call-Instance-Inherited Indirect freemind.extensions.HookAdapter getPluginBaseClass() in freemind.extensions.HookAdapter

48 115 Access-Object Reference-Parameter Direct freemind.modes.MindMapNode node from MindMapNode in executeScript(node, pAlreadyAScriptExecuted, ...

49 115 Access-Object Reference-Parameter Direct freemind.main.Tools.BooleanHolder pAlreadyAScriptExecuted from BooleanHolder in executeScript(node, pAlreadyAScriptExecuted,...

50 116 Call-Instance-Inherited Direct freemind.modes.mindmapmode.hooks.MindMapHookAdapter getMindMapController() in freemind.modes.mindmapmode.hooks.MindMapHookAdapter

51 125 Call-Instance-Inherited Indirect freemind.extensions.HookAdapter getController() in freemind.extensions.HookAdapter

52 125 Call-Interface Indirect freemind.modes.ModeController getController().getFrame().setWaitingCursor(false) in freemind.modes.ModeController

53 125 Call-Interface Indirect freemind.main.FreeMindMain getController().getFrame().setWaitingCursor(true) in freemind.main.FreeMindMain

54 148 Declaration-Parameter freemind.modes.MindMapNode node from MindMapNode

55 149 Declaration-Parameter freemind.main.Tools.BooleanHolder pAlreadyAScriptExecuted from BooleanHolder

56 150 Declaration-Parameter freemind.modes.mindmapmode.MindMapController pMindMapController from freemind.modes.mindmapmode.MindMapController

57 153 Declaration-Local Variable freemind.main.FreeMindMain FreeMindMain frame = ...

58 153 Call-Instance-Inherited Indirect freemind.modes.ControllerAdapter pMindMapController.getFrame() calls freemind.modes.ControllerAdapter.getFrame()

59 154 Call-Instance-Inner class Direct freemind.main.Tools.BooleanHolder pAlreadyAScriptExecuted.getValue(); from BooleanHolder

60 155 Call-Constructor Direct freemind.common.OptionalDontShowMeAgainDialog new OptionalDontShowMeAgainDialog(frame

61 156 Call-Interface Direct freemind.main.FreeMindMain frame.getJFrame() from FreeMindMain

62 156 Call-Instance-Inherited Indirect freemind.modes.ControllerAdapter pMindMapController.getSelectedView() calls freemind.modes.ControllerAdapter.getSelectedView()

63 158 Access-Object Reference-Parameter Direct freemind.modes.mindmapmode.MindMapController pMindMapController

64 159 Call-Constructor-Inner class Direct freemind.common.OptionalDontShowMeAgainDialog.StandardPr
opertyHandler

 new OptionalDontShowMeAgainDialog.StandardPropertyHandler (constructor of inner class)

35

65 160 Call-Instance-Inherited Indirect freemind.modes.ControllerAdapter pMindMapController.getController() calls freemind.modes.ControllerAdapter.getController()

66 161 Access-Class-Constant Direct freemind.main.FreeMind FreeMind.RESOURCES_EXECUTE_SCRIPTS_WITHOUT_ASKING

67 162 Access-Class-Constant Direct freemind.common.OptionalDontShowMeAgainDialog OptionalDontShowMeAgainDialog.ONLY_OK_SELECTION_IS_STORED

68 163 Call-Instance Direct freemind.common.OptionalDontShowMeAgainDialog .show().getResult(); from OptionalDontShowMeAgainDialog

69 163 Call-Instance Indirect freemind.common.OptionalDontShowMeAgainDialog .show().getResult(); from OptionalDontShowMeAgainDialog

70 168 Call-Instance-Inner class Direct freemind.main.Tools.BooleanHolder pAlreadyAScriptExecuted.setValue(true); from BooleanHolder

71 170 Access-Object Reference-Parameter Direct freemind.modes.mindmapmode.MindMapController pMindMapController

72 171 Access-Object Reference-Parameter Direct freemind.modes.MindMapNode node

73 195 Call-Interface Direct freemind.main.FreeMindMain getProperty(...) in freemind.main.FreeMindMain

74 195 Access-Class-Constant Direct freemind.main.FreeMind FreeMind.RESOURCES_EXECUTE_SCRIPTS_WITHOUT_ASKING

75 197 Call-Interface Direct freemind.main.FreeMindMain getProperty(...) in freemind.main.FreeMindMain

76 197 Access-Class-Constant Direct freemind.main.FreeMind FreeMind.RESOURCES_EXECUTE_SCRIPTS_WITHOUT_FILE_RESTRICTION

77 199 Call-Interface Direct freemind.main.FreeMindMain getProperty(...) in freemind.main.FreeMindMain

78 199 Access-Class-Constant Direct freemind.main.FreeMind FreeMind.RESOURCES_EXECUTE_SCRIPTS_WITHOUT_NETWORK_RESTRICTION

79 201 Call-Interface Direct freemind.main.FreeMindMain getProperty(...) in freemind.main.FreeMindMain

80 201 Access-Class-Constant Direct freemind.main.FreeMind FreeMind.RESOURCES_EXECUTE_SCRIPTS_WITHOUT_EXEC_RESTRICTION

81 203 Call-Interface Direct freemind.main.FreeMindMain getProperty(...) in freemind.main.FreeMindMain

82 203 Access-Class-Constant Direct freemind.main.FreeMind FreeMind.RESOURCES_SIGNED_SCRIPT_ARE_TRUSTED

83 212 Call-Class Direct freemind.main.Tools Tools.isPreferenceTrue(...) static method!

84 214 Call-Class Direct freemind.main.Tools Tools.isPreferenceTrue(...) static method!

85 216 Call-Class Direct freemind.main.Tools Tools.isPreferenceTrue(...) static method!

86 217 Call-Class Direct freemind.main.Tools Tools.isPreferenceTrue(...) static method!

87 228 Declaration-Local Variable freemind.main.FreeMindSecurityManager FreeMindSecurityManager securityManager from freemind.main.FreeMindSecurityManager

88 228 Declaration-Type cast freemind.main.FreeMindSecurityManager (FreeMindSecurityManager) System.getSecurityManager()

89 244 Call-Instance Direct freemind.main.FreeMindSecurityManager securityManager.setFinalSecurityManager(...)

90 252 Call-Instance Direct freemind.main.FreeMindSecurityManager securityManager.setFinalSecurityManager(...)

91 267 Call-Interface Direct freemind.main.FreeMindMain setProperty(...) in freemind.main.FreeMindMain

92 268 Access-Class-Constant Direct freemind.main.FreeMind FreeMind.RESOURCES_EXECUTE_SCRIPTS_WITHOUT_ASKING

93 271 Call-Interface Direct freemind.main.FreeMindMain setProperty(...) in freemind.main.FreeMindMain

94 272 Access-Class-Constant Direct freemind.main.FreeMind FreeMind.RESOURCES_EXECUTE_SCRIPTS_WITHOUT_FILE_RESTRICTION

95 275 Call-Interface Direct freemind.main.FreeMindMain setProperty(...) in freemind.main.FreeMindMain

96 276 Access-Class-Constant Direct freemind.main.FreeMind FreeMind.RESOURCES_EXECUTE_SCRIPTS_WITHOUT_NETWORK_RESTRICTION

97 279 Call-Interface Direct freemind.main.FreeMindMain setProperty(...) in freemind.main.FreeMindMain

98 280 Access-Class-Constant Direct freemind.main.FreeMind FreeMind.RESOURCES_EXECUTE_SCRIPTS_WITHOUT_EXEC_RESTRICTION

36

99 282 Call-Interface Direct freemind.main.FreeMindMain setProperty(...) in freemind.main.FreeMindMain

100 282 Access-Class-Constant Direct freemind.main.FreeMind FreeMind.RESOURCES_SIGNED_SCRIPT_ARE_TRUSTED

101 308 Call-Class Direct freemind.main.Resources freemind.main.Resources.getInstance()

102 308 Call-Instance Indirect freemind.main.Resources freemind.main.Resources.getInstance().logException(e2);

103 314 Call-Instance-Inherited Indirect freemind.modes.ControllerAdapter pMindMapController.getController() calls freemind.modes.ControllerAdapter.getController()

104 315 Call-Instance Indirect freemind.controller.Controller pMindMapController.getController().errorMessage(...) in freemind.controller.Controller

105 324 Call-Interface Direct freemind.main.FreeMindMain getResourceString(...) in freemind.main.FreeMindMain

106 328 Call-Instance Direct freemind.modes.mindmapmode.MindMapController pMindMapController.setNodeText(...)

107 328 Access-Object Reference-Parameter Direct freemind.modes.MindMapNode setNodeText(node, value.toString()

108 330 Call-Instance Direct freemind.modes.mindmapmode.MindMapController pMindMapController.editAttribute(...)

109 330 Access-Object Reference-Parameter Direct freemind.modes.MindMapNode editAttribute(node, ...)

 Total

