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Abstract. Reverse engineering of legacy systems is a process that involves analysis and
understanding of the system. Some people believe in-depth knowledge of the system is a
prerequisite for its analysis, whereas others, ourselves included, argue that only specific
knowledge is required on a per-project basis. To give support for the latter approach, we
propose a generic framework that employs the techniques of non-determinism and abstrac-
tion to enable us to build tooling for analyzing large systems. As part of the framework, we
introduce an extensible imperative procedural language called Kernel which can be used for
constructing an abstract representation of the control flow and data flow of the system. To
illustrate its use, we show how such framework can be instantiated to build a use-def graph
for a large industrial legacy Cobol and JCL system. We have implemented our framework
in a model-driven fashion to facilitate development of relevant tools. The resulting Gelato
tool set can be used within the Eclipse environment.

1 Introduction

Many companies operate systems which are developed over a period of many decades. These legacy
systems are subject to continuous adaptation and evolution to deal with changing internal and
external factors. Many of these systems do not meet the requirements of a maintainable system,
mainly due to lack of documentation and programming structure. Reverse engineering can be
employed to create a high level abstraction of the system and to identify its logical components
[1].

There are many challenges that one needs to deal with when reverse engineering a large legacy
system. First of all, finding a program understanding tool which can deal with the system of inter-
est is almost impossible. On the other hand, implementing a high-quality tool from scratch that
can handle the system is a tedious and time-consuming task. Furthermore, the old programming
languages used to develop the legacy systems tend to suffer from a lack of “singularity”[2] and
“elegance”[3], as viewed from the perspective of modern programming languages. We have investi-
gated the use of automatic analysis techniques to provide tool support and help with understanding
programs written in these languages.

Program analysis is an automatic analysis technique that can be used as part of reverse en-
gineering [4]. Any deep program analysis starts with a syntactic analyzer parsing syntactic units
into what is known as an abstract syntax tree. The tree produced must be annotated with the nec-
essary semantic knowledge by means of a semantic analysis. Although syntactic analysis depends
on the grammar of the language for which analysis needs to be performed, we argue that semantic
analysis should be performed independent of the language to be processed (see Sections 2 and 3).
This raises two questions that need to be addressed: 1) Is it possible to capture the semantics
upfront for all dialects and implementations of the same programming language? 2) How much
semantic information is ‘necessary’ to establish a sound foundation for conducting a particular
program analysis?

For a language like Cobol which comes in various dialects, each of which may have differ-
ent compiler products, establishing such semantic knowledge is impractical. In a word, no single
semantics exist! On the other hand, the semantic knowledge required strongly depends on the
analysis one wants to perform. For example, a type-based program analysis needs to decorate the
data definitions with the appropriate types, whereas a control-based analysis needs to know about



control dependencies. Moreover, when dealing with large systems, abstraction is not a choice but
a necessity. The analysis techniques need to be precise and scale at the same time.

Lammel and Verhoef [2] propose a technique in which syntactic tools are constructed and later
augmented with semantic knowledge on a per-project basis (demand-driven semantics). We build
on this approach by introducing a generic framework that employs 1) nondeterminism to compute a
sound abstraction of the control-flow of the program, and 2) abstraction by computing a particular
program analysis with respect to enough amount of semantic information required. To realize the
above features, the framework consists of an extensible intermediate language that helps achieve
separation between abstraction of the problem and data flow analysis. This separation provides
the context for an incremental approach to analyzing large software systems.

Model-driven engineering (MDE) provides a practical solution to performing software analysis
at different abstraction levels. In this setting, models present an abstract representation of the sys-
tem, which using standard transformation languages can be transformed into other models, hence
facilitating analysis of the system at different abstraction levels. Furthermore, using a standard-
ized metamodel, it is possible to create language-independent techniques to analyze and visualize
systems.

The paper makes the following contributions:

1. It presents a generic framework for performing program analysis on legacy systems that can
be instantiated in a system-specific fashion.

2. It employs techniques from MDE to facilitate analysis of legacy systems and construct the
required reverse engineering tools.

This paper is structured as follows. In Section 2, we motivate our work by outlining the chal-
lenges we have faced in dealing with our industrial legacy system. In Section 3 we describe the
generic framework, while in Section 4, we introduce the Kernel intermediate language used in the
framework and give the control flow representation of a valid program in Kernel. As an example, in
Section 5, we demonstrate how the framework can be instantiated to construct the use-def graph.
In Section 6 we give an informal description of the current status of our tooling. We proceed by
giving an empirical evaluation of the framework using the Gelato tooling in Section 7. Related
works are presented in the Section 8. Finally, in Section 9 we conclude and outline future work.

2 Motivation

We are currently involved in a legacy to SOA migration project in a large banking institution in the
Netherlands, comprising of five distinct legacy systems. Like many business-critical systems, their
systems are implemented in Cobol which runs on platforms such as IBM z/0OS and HP Tandem
nonstop. We have proposed a method [5] for migrating legacy systems to SOA which involves
identifying candidate services followed by concept slicing to extract relevant pieces of code. To
evaluate our methodology, we have been given access to one of their legacy systems, which from
now on we will refer to as InterestCalculation. As it is the case with most legacy systems, the
documentation of the InterestCalculation system is outdated and many of the people who were
involved in its development are not around anymore. We want to apply techniques from the field
of program analysis to help with both identification of services and slicing.

There are three important issues that need to be addressed when performing program analysis
on legacy systems. First of all, many legacy systems are heterogeneous and constitute multi-
language applications. For instance, the systems implemented for IBM mainframe usually employ
JCL job units to describe different task routines that need to be performed within the legacy
environment. Furthermore, Cobol has several extensions to provide support for embedded lan-
guages such as SQL and CICS. These are used to perform queries on tables and process customer
transactions, respectively. This also holds for our InterestCalculation system, which comprises of
Cobol and copybooks as well as JCL jobs, the former of which contains embedded SQL state-
ments. Furthermore, many old programming languages used to develop legacy systems contain
unstructured elements and provide only a minimum level of abstraction. One of the problems with



Cobol syntax is its verbosity, where there are many constructs with exactly the same semantics.
For instance, there are five statements for computing various arithmetic operations, namely, ADD,
SUBTRACT, MULTIPLY, DIVIDE and COMPUTE, each of which may take up to three formats.

Second, programming languages used for legacy systems do not follow an explicitly defined
language standard. C programming language is famous for comprising of many operations which
exhibit arbitrary behavior [6]. In C, using an uninitialized allocated variable on the heap, division
by zero, or indexing an array outside of its defined bounds are situations where undefined behavior
may occur. On the other hand, in these languages the semantics of many operations are left open
and the implementation must choose how to implement these operations. An example for this
situation is the pre- and post-incrementation in C, where the exact moment when incrementation
occurs is an implementation-specific issue. Furthermore, instances of a given programming lan-
guage may be home-brewed. It is estimated that there are about 300 Cobol dialects, each of which
has its own compiler products with many patch levels [2]. Consequently, the only possible way to
deal with inconsistencies is to rely on the compiler used to compile the system that is subject to
analysis.

If we do in fact have access to the compiler, there are two issues that need to be taken into
consideration. Program executables may exhibit different behavior depending on the compiler flags
they are compiled with. Moreover, the observable behavior of the program is unpredictable and
depends on the context in which it is executed such as the platform and the peripheral storage
devices used. On the other hand, it is not always possible to get access to the compiler product.
The compiler may not exist anymore or companies may deny access to their compiler product, as is
the case in our situation. We are fortunate to know that the system complies with IBM Enterprise
Cobol, so that we can follow the implementation reference [7]. However, when this is not possible,
one is faced with the difficult job of considering all semantic variations that may occur between
compilers, compiler versions and compiler flags. To get a feeling of the kind of variations one may
encounter when trying to gather different semantic variation points, let’s consider the following
two examples.

The following Cobol fragment corresponds to a compound ADD statement:

ADD A, B, C TO C, D(C), E.

Since we are using the Enterprise Cobol standard, we can rely on the implementation refer-
ence of language to figure out the order of evaluation, that is left-to-right. However, this is an
implementation-specific property and may affect portability of the program, if the target compiler
does not follow the same evaluation order.

The exception handling mechanism is another example which displays inconsistent behavior
across different compilers. The exception handling in Cobol is based on a syntax-driven special-
ization mechanism, where for one exception and two possible handlers, the more specific handler
is taken. For some statements, a statement-level handler can be defined. Besides statement-level
handlers, Cobol provides more general handlers known as USE declaratives to specify procedures
that are to be executed in the case an exception is raised. Although exception handling in Cobol
is prioritized, depending on different dialects and implementations, additional handlers may still
be taken. To clarify this point, let’s have a look at the following Cobol fragment:

ADD a To b ON SIZE ERROR imperative—statements.

In Enterprise Cobol, if the size error condition is raised upon execution of the ADD statement,
control is passed to the exception-specific handler. After completion of the handler statements,
execution continues with the statement directly after the ADD statement. This does not hold in the
case of ILE Cobol. In ILE Cobol, the statement-level specific-handler still has the highest priority,
however the control is then passed to an ILE condition handler, provided it is registered with the
run unit. Then the control is transferred to the USE declarative in Cobol. After execution of all
the additional handlers, the execution continues with statement directly after the ADD statement.




Finally, legacy systems contain code bases that run well into millions of lines of code, hence

scalability of any program analysis technique is essential. The InterestCalculation system consists
of almost 1 MLOC of Cobol source files and copybooks. Developing analysis techniques that are
simultaneously precise and scalable is not a simple task. To help resolve the above problems, we
have developed a generic framework that supports language-independent specification of data-flow
analyses.

3 A Generic Framework

In this section, we introduce a generic framework for analyzing large legacy systems. To overcome
the problems stated in the previous section, our framework has the following three features:

1. Language/Dialect-Independence: We strongly believe standardization through conversion to

a well-understood syntactic structure with semantic variation points is the key for analyz-

ing different dialects and versions of the Cobol language, and naturally paves the way for

heterogeneous systems comprising of Cobol and JCL.

. Abstraction and Nondeterminism: Semantic analysis needs to be performed in a context-
specific manner. We borrow concepts from programming language theory including non-
determinism and abstraction to create an environment through which semantic knowledge
can be added to the system of interest. Non-determinism guarantees the soundness of the
analysis by exploring all the possible variations at the cost of performance, whereas, abstrac-
tion ensures that only a minimal amount of information is stored to perform a sound analysis.

. Incrementality: Incrementality is key in building analysis tools that scale to large systems.
Separation of problem specification (abstraction) and data flow analysis is the way forward
for incremental analysis. In this approach, the framework can be re-instantiated with the new
information obtained from the result of an analysis to perform more fine-grained analyses.

To realize the above properties, the framework consists of an extensible intermediate language

called Kernel. Kernel employs non-determinism to capture semantics variation points at the con-
trol flow level. Furthermore, it provides extension points to extend the language to incorporate
abstractions required to compute a particular data flow analysis.
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Fig. 1. The Generic Framework for Analyzing Legacy Systems

Figure 1 depicts the step-by-step approach to instantiating the framework for performing a

particular data-flow analysis. The first step involves syntactic abstraction (parsing) of the source
program into an AST. In the next step, an abstract (static) semantics is created based on the



concrete or abstract programming languages that the program has to conform to, irrespective
of whether those are different dialects/implementations of the same programming language or
different languages that the program is written in.

Depending on the data flow problem we are interested in, the abstraction techniques deployed
ensure that enough information is stored to perform a sound analysis with respect to that problem.
For instance, reaching definition analysis used to build the use-def graph is expressed as an abstract
interpretation of the program which for each expression in the program infers whether a variable is
definitely used or defined after the possible execution of the statement. To help with the formulation
of this abstraction, extension points are provided in the kernel language to instantiate the abstract
domain for a set of analysis problems.

Based on the extracted abstract semantics, a mapping is created from the syntactic structure
of the source program into an instance of the Kernel language. The use of non-determinism makes
it possible to encode inconsistencies amongst different implementations, as well as points where
the particular semantics cannot be derived, e.g. when no knowledge of the compiler is available.

In the next step, we specify the data flow analysis problem as a monotone framework instance [4]
and solve the instance using an iterative work-list algorithm. The monotone framework consists of
a set of monotonic transfer functions which express the effect of statements on desired properties
of the program with respect to a flow analysis problem. Many flow analysis problems such as
reaching definition analysis (RDA) meet the monotonicity requirement and can be expressed in
terms of the monotone framework. Based on the data flow analysis problem, here RDA, we give a
set of transfer functions and data flow equations to instantiate the monotone framework.

The results of data flow analysis can be reused to incrementally analyze a legacy system. The
result of one analysis serves as a foundation to conduct more fine-grained analyses. To demon-
strate this, consider the inter-procedural dependencies derived from RDA analysis. Once we have
constructed the information chain, we can interactively scope down our analysis to a smaller set of
modules to perform much more detailed analyses, that because of their resource demands cannot
be applied to the system as a whole.

4 Kernel Language

In this section, we introduce an extensible imperative procedural language called Kernel. We
proceed by giving the control flow representation of a valid program in Kernel.

4.1 Syntax of Kernel Language

We begin our formal semantic definition by giving the abstract syntax of Kernel. In Kernel,
we distinguish between expressions and statements. Expressions and statements may both cause
computational effects or diverge. The set of labels are denoted using Lab,. Annotating statements
with labels helps support the tracking of elements in Kernel back to their origin in the original
program, by creating traceability relations between the constructs in the program and the Kernel
code.

The Kernel language as defined in Figure 2 allows for defining parameterized procedures at
both the program level as well as nested subprocedures. It is equipped with default assignments,
conditionals, iteration and unstructured jumps. The calls to procedures are done through explicit
call by name (label). The return statement transfers the control to the calling program. The
try-exception block allows for defining statements that may throw an exception, with its set of
handlers explicitly defined. Normal or abnormal termination of a run unit is defined using the
abort statement. The skip statement is equivalent to a no-op. To reduce the complexity of control
flow analysis, we apply a reduction rule to reduce consecutive skip statements into a single skip
statement, while preserving their corresponding labels.

To give support for nondeterministic behavior, Kernel provides parallel blocks x> as well as
non-deterministic blocks |>. The parallel block comes in three variations: the >3, and x>,.9
blocks are deterministic where the order of evaluation of its statements are from left-to-right and



program P =1 : proci(e;

procedures proc(e) :=1; : proci(ei;
| s

statements su=1l:c

81582

> s

*>12r 8_3

*> 0 5—1>

*> i1y S—Z

commands cu=e

vi=e

ret [: e

goto [

skip

if (I: e) then s; else s

while (I : e) do s

call [(e)

try s; with exception sz

abort

D

expressions e::

Fig. 2. The context-free grammar for the Kernel

right-to-left, respectively. On the other hand, x>, block uses interleaving semantics by exploring
all the possible interleavings of its statements. Please, note that the parallel block does not give
any extra computational power, but is simply syntactic sugar. The parallel block can be unfolded
into a deterministic or non-deterministic block depending on the value of the order of evaluation.
The expression language is abstracted to some abstract domain I, which acts as an extension
point which can be instantiated based on the needs of a particular data flow analysis problem.

4.2 Interprocedural Nondeterministic Control Flow Graph

Before we give the control flow representation of a valid program in Kernel, we introduce the
notion of interprocedural nondeterministic control flow graph. We combine the nondeterministic
control flow representation, as given in [8] with the standard definition of interprocedurally valid
program in [9] to yield an interprocedural nondeterministic control flow graph (INCFG, for short).
INCFG is defined as a supergraph consisting of a collection of intraprocedural nondeterministic
flow graphs (NCFG, for short).

An NCFG is defined as follows:

NCFG =<V, Vp, VNV, Vg, Ac, AN, Acr, 5, > (1)
where

— V: a set of nodes in the graph

— Vn C V: a set of nondeterministic selection points

— Vo C V: a set of call nodes

— Vr C V: a set of return-site nodes

— Ac CV x V: a set of intraprocedural sequential edges

— Ay C Vi x V: a set of intraprocedural nondeterministic selection edges
— Acgr C€ Vo x Vg: a set of intraprocedural call-to-return-site edges

— s € V: the unique entry point

— t € V: the unique exit point



An INCFG is defined as follows:
INCFG =< NCFG*, Vi, V3,8, T, Acs, Arr, s,t > (2)

where

— NCFG*: a collection of NCFGs

S: the set of all entry points in NCFG*

— T the set of all exit points in NCFG*

— V& the set of all call nodes Vg in NCFG*

V5: the set of all return nodes Vg in NCFG*

— Acs C V& x S: the set of interprocedural call-to-return-site edges from the the call-site to the
entry point of the called procedure

— Arp C T x V§: the set of interprocedural exit-to-return-site edges from the exit node to the
return-site of the calling procedure

— s € S: the unique entry point corresponding to one of the entry points in its containing NCFG

— t € T the unique exit point corresponding to one of the exit points in its containing NCFG

Please, note that all the set of S, T', V& and V5 can be derived from the NCFG™, but are included
for convenience.

4.3 Control Flow Representation of Kernel

In the sequel, we show how to instantiate the INCFG for a program in Kernel. We distinguish
between control flow of the procedures at the program-level and those of nested subprocedures.

A program P in Kernel is represented using an INCFG, denoting a flattened representation
of the control flow of the program. This flattened graph comprises a collection of intraprocedural
NCFGs, separated into a set of subgraphs which are sequentially disjoint. Each of the subgraphs
maps to a procedure at the program level and there is no sequential edge connecting any two
subgraphs at this level. On the other hand, the subgraph for each procedure is a monolithic graph
comprising a set of NC'FGs corresponding to each subprocedure in the procedure, with a set of
additional sequential edges. In this subgraph, for each NCFG, there is a successor (sequential)
edge from its exit vertex to the entry vertex of its syntactically successive NCFG. Since the
language supports arbitrary levels of nesting, its corresponding graph becomes a disjoint multi-
level supergraphs of INCFGs.

We define a pair of functions, labels(P) and flow(P) to represent the control flow graph of
program P, where the set of labels correspond to the set of nodes in the INCFG, and its flow maps
to the set of edges in the graph. There is a pair of labels for each call statement, (¢ and [,.. We
define a pair of two auxiliary functions namely, inits ,() and finals,() which returns the initial
label and final labels of a statement and a procedure, respectively. The edges are subscripted by
n, s, ¢, r to denote nondeterministic, sequential, call and return edges, respectively. Figure 3 gives
the flow of a well-formed program in Kernel.

5 Data Flow Analysis

An important data flow analysis that is useful for program understanding is use-def chaining.
The links derived from this analysis determine for each use of a variable in a program, all the
assignments that may reach that use. To give support for this analysis, we show how the Kernel
language can be extended with the necessary abstractions to perform the analysis.

5.1 Instantiating the Abstract Domain for Building Use-Def Chains

We introduce a base domain by instantiating the abstract domain for analyzing programs to build
use-def chains. We are only interested in the flow of data from the definition site of a variable to



flow(l; : proci(eii) = |, flow(proc;(e;))
U, {(finaly (proci(e:)), inity (proci+1 (ei+1)))s}
flow(l:e)=10
flow(l : skip) =0
flow(s;;s2) = flow(s;) U flow(sg)
U{(l, inits(s1))s | I € finals(s1)}
flow(l:[> &) = U, flow(s;)
Ui {(Z; inits (si)n }
flow(if (I : e) then s; else sp) = flow(s;) U flow(sz)
U{(l, inits(s1))s, (1, inits(s2))s }
flow(while (I: e) do s) = flow(s) U {(I, inits(s))s}
U{(l',D)s | I € finals(s)}
flow(l:ret I : e) = {(I, final,(p))s
| p is the procedure that contains the return statement}

flow(l : goto I') = {(I,I')s}
flow(l : call I'(e)) = {(I,1)s}
U (1%, inity (p))e

| p is the procedure corresponding to label I’}

U {(finaly(p), 7).
| p is the procedure corresponding to label I}
flow(l : try s; with exception sp) = flow(s;) U flow(sz)
U {(U', inits(s2))s
| ' € final labels of all the elementary statments in s1}
flow(! : abort) = {(, final,(p))s
| p is the outermost containing procedure of abort}

Fig. 3. The control flow of a program in Kernel

its uses. The domain is a list of elements of the abstract domain where the order of occurrence of
elements influences the flow of data. Figure 4 defines the elements of the domain suited for our
purposes.

As a side note, we have decided to distinguish between visible and hidden side-effects. It is
important to make such a distinction as to allow one to track the origin of the occurrence of a
variable to a statement in the original program. Usually, hidden side-effects are not obvious from
the syntax of the program.

There are two cases in Cobol where a hidden side-effect may occur: the file position indicator
and the file-status key. If the file position indicator is set, I/O operations result in advancing the
file offset. On the other hand, the file status key is used to provide an error-handling mechanism for
I/0 operations. If a file status key is associated with a file, any error resulting from execution of I/O
on the file at runtime, results in altering the value of the key. We use the affects() subexpression
to denote these hidden side-effects.

We define a pair of use and definition (hidden and visible) subexpressions. The first set of
subexpressions are used to use (uses()) or overwrite the current value of the field (defines() and
affects()). The second set of subexpressions use the value of the field before reaching the contain-
ing statement (uses’()) or overwrite the field after completion of the statement (defines’() and
affects’()). To understand why we need the extra set, let’s have a look at the Cobol fragment
below.

ADD A, B, C TO C, D(C), E.

The execution of this compound ADD statement is equivalent to executing the following set
of statements:

T




|ADD A, B, C GIVING TEMP.
ADD TEMP TO C.

5| ADD TEMP TO D(C).
ADD TEMP TO E.

A compiler may generate a temporary result field, TEMP, to store the temporary result of
addition of the operands on the LHS of the operator. In other words, the value of these operands
in the subsequent statements depend on the value as defined before reaching the ADD statement.

abstract domain D == [abs]

domain elements abs ::= uses(v) | defines(v)
| affects(v) | uses’(v)

| defines’(v) | affects’(v)

Fig. 4. The expression language for the Kernel

The order of definition and usage is from left to right in the list. Please note, defines subex-
pression in the expression list uses all the variables specified as uses starting from the head of
the list until the position where the defines subexpression occurs. To help improve the perfor-
mance, we apply reduction rules to reduce consecutive abstract elements of the same variable to a
single abstract element. For example, consecutive occurrences of defines(v) is reduced to a single
definition of v.

Assignment statements as defined in the syntax of Kernel are used to express single variable
assignments, whereas the expression language is much more expressive allowing for specifying
a sequence of arbitrary usage, define and affects subexpressions. Consequently, the expression
language is powerful enough to express impure/effectful expressions. As part of normalization, we
transform assignment statements into an expression statement.

5.2 Building the Use-Def Graph

Constructing the use-def graph requires establishing knowledge about reaching definitions of a
variable in a statement where it is used. We follow the use-def chaining as described in [4] to
construct the use-def graph. We apply Reaching Definition Analysis to construct links between
statements that define a variable and those that use them.

The data flow equations for the reaching definition analysis used here are the same as the ones
given in [4]. The only difference is that post-definitions will not redefine the variable until they
reach the end of their immediate confined non-deterministic block. If no non-deterministic block
exists, they are treated as if they were on-site definitions.

We use the algorithm for interprocedural data flow analysis as given in [9] to compute the set
of reaching definitions for all program statements. Once the result is obtained, creating use-def
chains simply becomes associating a link between the usage of a variable in a statement with all
the possible set of reaching definitions of that variable. One simple difference is that the pre-usage
is linked to its reached definitions prior to entering the innermost nondeterministic block.

6 Implementation

In this section, we introduce our Gelato (Generic Language Tools) toolset [10]. Gelato ! is an
integrated set of language-independent (generic) tools for legacy software system modernization,

! The latest builds of the plugins can be obtained at: https://github.com/amirms/gelato



including parsers, analyzers, transformers, visualizers and pretty printers for different program-
ming languages. There are many workbenches that support generating generic tools for language
engineering such as the ASF-SDF environment [11], and model-based workbenches such as EMF-
Text? and Xtext3. We have opted for EMFText due to its support for a wide range of languages, in
particular Java through the Jamopp project, to support software system analysis in a model-driven
fashion.

We have adopted a model-driven approach to facilitate development. The Eclipse Modelling
framework (EMF) is an Eclipse-based modeling framework which uses the standard Ecore meta-
model for model-based language engineering. Although MDE deals with artifacts at the model
level, EMFText and Xtext try to bridge this gap between modelling languages and programming
languages by providing a text syntax for instances of Ecore metamodels. Defining a language with
its text syntax as a Ecore metamodel comes with many benefits including 1) language reuse and
extension using embedded DSLs, 2) use of standard transformation languages such as QVT [12]
for model transformation, and 3) a wide availability of language-independent tools for analysis
and visualization.

In Section 7, we demonstrate how the framework can be instantiated. In the first stage, a
parser parses Cobol programs into an abstract tree which we call a Cobol model. We exploit em-
bedded DSL techniques to extend the Kernel language to provide the abstractions necessary for
the specification of the data flow problem. The transformation from the Cobol model to Kernel
is performed in two stages: a pre-translation stage computes static information including aliases,
hidden side-effects and exception handling techniques; this information is then fed into the trans-
lator to obtain its implementation in Kernel which is then used to perform control and data flow
analyses. To determine the main entry points to the Cobol program, a JCL job unit is parsed and
transformed as explicit calls to the corresponding procedures of the Cobol programs in Kernel. The
pre-built monotone framework which is implemented in Java is instantiated for performing reach-
ing definition analysis (RDA), the result of which establishes the information chain for building
the use-def graph.

6.1 Parsing Cobol

The Cobol language, as part of the Gelato toolset defines a metamodel for Cobol that covers the
whole language. The standard Ecore metamodels are used to specify Cobol language, which allows
for future extension. The textual syntax is defined in EMFText which generates a parser as well
as a pretty printer for the language. There has been a lot of work on how to deal with different
dialects of Cobol at the syntactic level [13]. The Cobol language used in our legacy system is based
on Cobol 85 as implemented in IBM Enterprise Cobol; no support is given to the new constructs
introduced in Cobol II and IBM extensions (VS Cobol II, OS/VS Cobol, etc.) such as pointers.
Moreover, we have decided to exclude deprecated ALTER and ENTRY statements, as they are
not used in our system.

The grammar we are using is based on the ANSI Cobol 85 standard. We have exploited lake
grammars [14] to fine-tune the syntax to allow us to correctly parse the Cobol legacy system.
Contrary to island grammars, we start with a complete grammar for a given language and extend
the grammar with a number of liberal production rules to allow for parsing slightly different
dialects, for instance, inclusion of IBM extensions in our case. However, at times we have diverged
from the specification by simplifying the rules, therefore allowing more programs to be accepted.
In our approach, we ensure that the syntactic units that have been skipped do not interfere with
the semantics of the program with respect to a particular analysis. Our primary goal here is to
develop an environment for pure reverse engineering purposes, where we make the assumption
that all the code we are dealing with are compilable (syntactically correct).

Our metamodel consists of 461 classes, 120 of which are abstract. The metamodel is divided
into 28 packages. There is support for all the features of the language from abbreviated conditions
to special names.

2 http://www.emftext.org
3 http://www.eclipse.org/Xtext



We follow the approach proposed in [13] by performing parsing in three-stages, while at each
step preserving enough information to be able to recreate its printed version. The parsing process
is as follows: 1) stripping Cobol code of the irrelevant columns to obtain the so called 666-code,
followed by its lexical disambiguation; 2) a preprocessor parses the disambiguated 666-code to
extract the COPY statements followed by inlining the referenced copybooks after application of
the replacements, if necessary; 3) the inlined 666-code is then fed into the Cobol parser to obtain
its abstract representation (Cobol model).

6.2 Testing

We have partially tested the Cobol parser and pretty printer, but further evaluation is required to
assess their correctness and completeness. Since our parser can also accept invalid programs, the
main objective of the testing phase is to ensure it can handle industrial-sized applications. We have
defined a test suite to check whether 1) valid programs are accepted; 2) name and cross-reference
resolution is performed correctly; 3) the pretty printing does generate a program which correctly
maps to the original one; and 4) it does indeed generate a correct parse tree. Although we can
claim with a certain level of confidence that the parser and printer meet the (1-3) criteria, we are
yet to perform a thorough testing on whether the parser indeed creates a correct parse tree.

6.3 Preprocessing Cobol Model

Before we can perform the translation, we need to infer the static information from the Cobol
program that is required to create a sound abstraction of its control and data flow. This information
includes:

— Propagating Alias Information: The alias information has to be extracted and propa-
gated. An alias occurs when two or more identifiers point to the same memory location. In
Cobol 85, there are 3 cases where an alias arises: 1) structured fields (group data items), 2)
redefining /renaming fields and 3) condition-names.

— Extracting Exception Handling Mechanisms: As stated in Section 2, Cobol provides
various exception handling mechanisms. Based on the abstract semantics of the language we
are working with, we need to infer the set of handlers a statement may throw, which may
include handlers with the USE declarative. We also need to know if a statement may cause an
abnormal termination of the run unit for a particular type of exception.

— Hidden Side-effects: The hidden side-effects for different statements need to be identified.
As stated in Section 5, file status key in Cobol is an example where execution of an I1/0
statement may alter its value.

6.4 Entry Points in Batch Mode

In a mainframe environment, programs can be executed in batch and online mode. In batch mode,
programs are submitted to the operating system through a batch job. The Job Control Language
(JCL) is used to submit a batch job to the mainframe through the Job Entry System (JES).
Each JCL job consists of one or more job steps; each can execute a program through the EXEC
statement or call another procedure which in turn comprises of some job steps. For identifying
all programs belonging to an application, all the programs submitted to the Operating System
through the JCL procedures need to be taken into account [15]. It is only in the context of these
programs, that together with indirect calls, a system dependency graph can be derived.

The current implementation of JCL language in the Gelato toolset is a partial implementation
of IBM MVS JCL. We have restricted ourselves to the EXEC statements to find the programs that
are invoked through a job unit. For a fully fledged parser, one must consider JCL (sub-)procedures
and INCLUDE statements amongst others.



6.5 Translation to Kernel

The translation process involves two stages, where during the first stage, new mappings from fresh
variables to the fields are created. All the mappings are stored using the EMF persistent storage
to allow for later usage. In the second stage, based on this mapping, translation takes place. We
use the imperative QVT Operational Mapping (OM) as part of the OMG standard QVT [12]
transformation language to encode the mappings from Cobol to Kernel. The transformer proceeds
top-down, traversing the Cobol model and recursively converting submodels to corresponding
sequences of statements in the target model. The code snippet in Listing 1.1 depicts an excerpt of
transformation rules used, here to map a MOVE statement in a Cobol program to its representation
in the Kernel language.

mapping in COBOL::statements::Move::transformMove ()
: KERNEL::statements::ExpressionStatement {

init{

result := object KERNEL::statements::ExpressionStatement{label :=
getFreshLabel () ;}
}
result.expression := object KERNEL::expressions::Expression{label=getFreshLabel
(OB H
result.expression.children := self.sender.transformOperandForUsage();

result.expression.children += self.receivers.transformOperandForDefinition();

Listing 1.1. The mapping rule for transforming a MOVE statement to Kernel

6.6 Limitation

Besides the CALL statement, Cobol provides another technique for calling intra-module proce-
dures with the possibility of code sharing: the PERFORM statement. As is well-known, not all
well-formed PERFORM statements have a valid semantic interpretation. The IBM compiler used
in [16] uses a single continuation to store the dynamic fall-through successor of the exit of the
subprocedures in a program, while storing its static successor in a special storage area. As a con-
sequence of this implementation, recursive calls are not possible. Furthermore, abnormal behavior
may occur if the control does not reach the exit of the PERFORM range. Since Cobol provides
unstructured jumps, i.e. GOTO statement, a situation may arise where continuations are still ac-
tive (mines), even though the control has jumped out of the perform range. Field and Ramalingam
[16] try to overcome this problem by performing an analysis to conservatively identify PERFORM
ranges that follow the conventional LIFO, before transforming it into a well-structured procedural
representation. We have decided not to account for possible misuses of PERFORM statements, as
it was not necessary when dealing with our legacy system. The legacy system we are working on
is very well-structured and does not contain any GOTO statements. Thus such behavior cannot
occur.

Second, we have decided to exclude the embedded execute statements for the time being, thus
EXEC statements are mapped to skip. In Cobol, EXEC statement is used to embed SQL or CICS
commands.

Finally, dynamic calls are excluded, as it requires accounting for string manipulation oper-
ations in Cobol such as literals constructed through STRING and UNSTRING operations. To
ensure soundness of our analysis, we could potentially transform dynamic calls to static calls to
all the procedures that match the call signature, however in this work, we map dynamic calls
to simple uses of variable holding the value of the called program. This transformation makes
our analysis unsound, however, as we shall see in the next section, the coding practice used in
the InterestCalculation system guarantees the soundness of our analysis for building the use-def
graph.
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7 Evaluation

7.1 Example Case Study

Here we give an example Cobol program that is representative of our InterestCalculation system,
depicted in Listing 1.2. Its corresponding generated representation in Kernel is given in Listing
1.4. The mapping from the set of referenceable elements in Cobol including datanames, record-
names and filenames to their corresponding set of variables in Kernel is stored that can be used to
interpret the Kernel program. Furthermore, a mapping exists from the set of elements including
procedures and statements to their corresponding labels in Kernel that can be used to trace back
its origin. Listing 1.3 depicts an example JCL batch job which is used to submit the INTER-
ESTCALCULATION program to the operating system. The programs called through the EXEC
statements are used as the entry point to the Cobol program.

IDENTIFICATION DIVISION.
PROGRAM-ID INTERESTCALCULATION

DATA DIVISION.
FILE SECTION.
FD IN-FILE.
01 IN-REC.
02 IN-NAME PIC A(20).
02 IN-ACCOUNT PIC 9(6)V99.
02 IN-INTEREST PIC 99V99.
FD OUT-FILE.
01 OUT-REC PIC X(80).

WORKING-STORAGE SECTION.
77 EOF PIC X VALUE "N".
01 INTEREST1 PIC 99V99.
01 INTEREST2 PIC 99V99.

PROCEDURE DIVISION.
MAIN.
OPEN INPUT IN-FILE OUTPUT OUT-FILE.
READ IN-FILE END MOVE "Y" TO EOF.
PERFORM INTEREST-CALC THRU PRINT.
PERFORM END-PROGRAM.

INTEREST-CALC.

IF IN-ACCOUNT IS NOT < 150000
SUBTRACT 50000 FROM IN-ACCOUNT
MULTIPLY IN-INTEREST BY IN-ACCOUNT

GIVING INTEREST1, INTEREST2.

PRINT.
MOVE "INCOME INTEREST SLIP "
TO OUT-REC.
WRITE OUT-REC.

END-PROGRAM.
STOP RUN.

Listing 1.2. A representative Cobol program

Listing 1.4 depicts the resulting Kernel program from translation of Cobol program and JCL
unit. Data flow analysis is performed to build the use-def graph for a particular job unit.

7.2 Empirical Findings of InterestCalculation System

In this section, we give our findings and observations with respect to the InterestCalculation
system.




//EXJCL JOB ‘CALC’,CLASS=6,MSGCLASS=X,NOTIFY=&SYSUID
/7%
//STEP001 EXEC PGM=INTERESTCALCULATION

Listing 1.3. An example JCL batch job for submitting Cobol program to OS

0:Procedure main (){
35: call INTERESTCALCULATION();
}

5| 1:Procedure INTERESTCALCULATION (){

2:Procedure PROC1(){
6:try {7:[uses(varl);uses(var2)];}
with 8: exception {9: abort;}
10:try {11:[uses(var1)];}
with 12: exception {13: [defines(var3)]; 1}
14: { 15: call PROC2(); 16: call PROC3();}
17: { 18: call PROC4Q);}

3:Procedure PROC2(){
19:1f (20: [uses(varl)]) then{
21:try {22:[uses(varl);defines(varl)];}
with 23: exception {24: abort;}
25:try {26:[uses(varl);uses(varl);defines(var4);defines(var5)];}
with 27: exception {28: abort;}
};

4:Procedure PROC3(){
29: [defines(var2)];
30:try {31:[uses(var2)];}
with 32: exception {33: abort;}

5:Procedure PR0OC4(){
34:{abort;}

Listing 1.4. The representation of Cobol program in Kernel

As is the case in many legacy systems, during our copybook inlining operation, we found out
that there are 45 copybooks missing. Consequently, some of the identifiers used in the program
could not be resolved to any data item. To overcome this hurdle, we create a set of proxy refer-
enceable elements to resolve the unresolved identifiers. Moreover, to our surprise, we found out
that just over a quarter of the 21085 copybooks handed to us were actually used. The entire set of
copybooks comprised of almost 600 KLoC. Table 1 gives some metrics for the InterestCalculation
system.

We use the classification of dependencies for Cobol as defined in [17]. They classify the depen-
dencies in terms of functional dependencies and data dependencies. A functional dependency is
created from a calling program to the callee through a CALL statement, whereas data dependency
is created from a program to a copybook through a COPY statement. We extract the structural
dependencies during the inlining operation.

The diagram in Figure 5 depicts an excerpt of the dependencies between Cobol source files
and the copybooks. The green nodes correspond to the modules and the gray nodes represent the
referenced copybooks.

In order to extract the functional dependencies, we needed to build the use-def graph for
the InterestCalculation system. We have followed the approach as given in previous sections to
instantiate the framework to construct the use-def graph. We have opted to make an exhaustive
analysis by including a call to all the modules in the intial program entry. All the program calls
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Table 1. Metrics for InterestCalculation System
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Fig.5. An excerpt of data dependency graph in InterestCalculation

in the system are dynamic, however upon completion of this analysis, we observe that all the
values reaching call statements are uninitialized. That is, the value reached upon calling a program
comes from the environment. A practice used in this system, as is common in many well-engineered
systems, is to use a set of immutable variables and initialize them with the name of the programs to
be called in the declaration section of the Cobol program. Following up on this finding, we extract
the string literals of the initial values of the variables from the declaration section to create
a functional dependency graph. Figure 6 gives an excerpt of the inter-procedural dependencies
through the CALL statement. The direction of link is from the calling module to the called
module.

Through performing the exhaustive control flow analysis, we have identified the unreachable
code 4. There is less than 1% unreachable code, which is found in 5 modules. This can be partly
due to an evolving software with continuous removal of products from the application logic that
are no longer needed to be supported. Eliminating dead code not only helps with reducing the
code space, but also with further transformations on the control flow of the program.

The experiment is performed on a 2.80 GHz Intel Core i7 quad-core machine with 16 GB RAM.
The parsing of Cobol and JCL code takes about 20 minutes. The transformation and writing to a
new file takes the least amount of time, that is 812 seconds. Loading the generated Kernel code
followed by instantiating the monotone framework and performing the data flow analysis takes
the longest with 1676 seconds. Thus, the whole process from parsing Cobol and JCL units to
constructing the use-def graph takes just over an hour. Further improvement on the performance
is required to ensure the scalability of the analysis in a reasonable amount of time.

4 Unreachable code is the set of statements in the source code that are not reachable from the main entry
point.



Fig. 6. An excerpt of functional dependency graph in InterestCalculation

8 Related Work

There have been numerous works over the years to give support to language-independent program
analyses. One aspect of analyzing heterogeneous systems is concerned with fact extraction from
the source code. In general, these approaches can be classified into two categories, one based on
lexical analysis, and the other based on syntactic analysis. Lexical-based techniques rely on lexical
methods to extract information from system artifacts. These techniques provide a flexible and
robust solution that can easily be extended to deal with multi-lingual code bases at the cost of
losing soundness and precision. The most well-known tools are grep, lex scannner gerenator [18],
and AWK [19] using regular expressions to match patterns. On ther other hand, grammar-based
techniques, employ parsers to build parse tree for performing sound and detailed data flow analyses.
Although writing a parser for a language is tedious and expensive, alternative approaches based
on island grammars [14], [20] are proposed for building robust parsers for large and multi-lingual
systems.

Performing data flow analysis requires not only to deal with different syntactic units but also
different semantic variation points in each implementation of the language. Moonen [1] proposes
a generic data flow language called Dhal for performing different data flow analyses, however it
fails to address issues related with semantic variation points at both control and data flow levels.
Furthermore, Strout et al. [21] introduced the OpenAnalysis toolkit that uses an abstraction layer
between the representations and the analysis engines to give support to language-independent
program analysis. Reps et al. [22] present CodeSurfer/x86 and companion tools that can be used
to recover the intermediate representations from low-level software artifacts. More recently, Strein
et al. [23] proposed a language independent metamodel and an architecture to give support for new
analyses, refactorings, and new front-ends of programming languages. Basten and Klint present
DeFacto [24], a fact extraction technique which annotates the context-free grammar of a language
with facts which can later be extracted from parse tree fragments to perform a software analysis.
In a similar work, Mark Hills [25] presents a domain-specific language called DCFlow in Rascal
[26] for declarative specification of the control flow graph for a variety of language constructs.

Analyzing multi-language systems requires dealing with references to data and control defi-
nitions that cross the language boundaries. Kullback et al. [15] try to overcome this problem by
presenting a graph-based conceptual modeling approach using EER/GRAL to represent relevant
aspects of each language into a common conceptual model. Mayer and Schroeder [27] propose a
generic approach to understanding, analyzing and refactoring cross-language code by explicitly
specifying the semantic cross-language links.



There is a growing trend in using MDE principles and techniques to perform reverse engineering
tasks. MoDisco [28] proposes a generic and extensible framework for reverse engineering legacy
systems in a model-driven fashion. It extracts models from Java source code. Heidenreich et al.
[29] uses Jamopp to modernize Java applications. We have built on these approaches and present
a toolset for extracting models from Cobol-based systems.

9 Conclusion and Future Work

We have proposed a generic framework for analyzing legacy software systems. Based on our ob-
servations regarding the problems one may encounter when dealing with large legacy systems, our
framework employs nondeterminism and abstraction to achieve language-independency and in-
crementality. Language independency is achieved through the specification of the source program
in terms of an intermediate language which uses nondeterminism to capture semantic variations
points at the control flow level. Moreover, the intermediate language provides extension points to
give support to abstraction of data flow problem. This gives rise to incrementality which can be
used to compute more precise as well as fine-granular analyses.

As part of future research direction, we want to go beyond Cobol, by both extending our
tools to analyze programs in heterogeneous environment, as well as handle embedded languages.
We would like to further implement features in JCL by accounting for procedures and import of
libraries, as well as including CICS/SQL embedded statements in the Cobol program. We want
to further maturize the Gelato toolset by both conducting more experiments on real case studies
and conduct more testing to validate it. Furthermore, we want to perform more analyses to assist
with service identification using the framework.

References

1. L. Moonen, “A generic architecture for data flow analysis to support reverse engineering,” Theory and
Practice of Algebraic Specifications; ASF+ SDF, vol. 97, 1997.

2. R. Lammel and C. Verhoef, “Cracking the 500-language problem,” Software, IEEE, vol. 18, no. 6, pp.
78-88, 2001.

3. P. Baumann, J. Faessler, M. Kiser, Z. Oeztuerk, and L. Richter, “Semantics-based reverse engineering,”
1994.

4. F. Nielson, H. R. Nielson, and C. Hankin, Principles of program analysis. Springer-Verlag New York
Incorporated, 1999.

5. R. Khadka, G. Reijnders, A. Saeidi, S. Jansen, and J. Hage, “A method engineering based legacy to
SOA migration method,” in 27th ICSM’11. IEEE, 2011, pp. 163-172.

6. L. O. Andersen, “Program analysis and specialization for the ¢ programming language,” Ph.D. dis-
sertation, University of Cophenhagen, 1994.

7. Enterprise Cobol for z/0S, V4.2, Language Reference. IBM Corp., 2009.

8. J. Cheng, “Nondeterministic parallel control-flow/definition-use nets and their applications,” Parallel
Computing: Trends and Applications,” Elsevier Science Publishers BV (North-Holland), pp. 589-592,
1994.

9. T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow analysis via graph reachabil-
ity,” in Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. ACM, 1995, pp. 49-61.

10. A. Saeidi, J. Hage, R. Khadka, and S. Jansen, “Gelato: Generic language tools for model-driven
analysis of legacy software systems,” in Reverse Engineering (WCRE), 2013 20th Working Conference
on, Oct 2013, pp. 481-482.

11. M. Brand, A. Deursen, J. Heering, H. Jong, M. Jonge, T. Kuipers, P. Klint, L. Moonen, P. Olivier,
J. Scheerder, J. Vinju, E. Visser, and J. Visser, “The ASF+SDF meta-environment: A component-
based language development environment,” in Compiler Construction, ser. Lecture Notes in Computer
Science, R. Wilhelm, Ed. Springer Berlin Heidelberg, 2001, vol. 2027, pp. 365-370.

12. OMG, “QVT. Meta Object Facility (MOF) 2.0 Query/View/Transformation specification,” Final
Adopted Specification (November 2005), 2008. [Online]. Available: http://www.omg.org/spec/QVT/
1.0/PDF



13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

M. G. J. Van Den Brand, M. P. A. Sellink, and C. Verhoef, “Obtaining a COBOL grammar from
legacy code for reengineering purposes,” in 2nd TPAS, ser. Algebraic’97. Springer, 1997, pp. 6-16.
L. Moonen, “Generating robust parsers using island grammars,” in Reverse Engineering, 2001. Pro-
ceedings. Eighth Working Conference on, 2001, pp. 13—-22.

B. Kullbach, A. Winter, P. Dahm, and J. Ebert, “Program comprehension in multi-language systems,”
in Reverse Engineering, 1998. Proceedings. Fifth Working Conference on, Oct 1998, pp. 135-143.

J. Field and G. Ramalingam, “Identifying procedural structure in Cobol programs,” in ACM SIGSOFT
Software Engineering Notes, vol. 24, no. 5.  ACM, 1999, pp. 1-10.

J. Van Geet and S. Demeyer, “Lightweight visualisations of Cobol code for supporting migration to
SOA,” Electronic Communications of the EASST, vol. 8, 2008.

M. E. Lesk and E. Schmidt, “Lex: A lexical analyzer generator,” 1975.

A. V. Aho, B. W. Kernighan, and P. J. Weinberger, The AWK Programming Language. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1987.

N. Synytskyy, J. R. Cordy, and T. R. Dean, “Robust multilingual parsing using island grammars,”
in Proceedings of the 2003 Conference of the Centre for Advanced Studies on Collaborative Research,
ser. CASCON ’03. IBM Press, 2003, pp. 266—278.

M. M. Strout, J. Mellor-Crummey, and P. Hovland, “Representation-independent program analysis,”
in Proceedings of the 6th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering, ser. PASTE ’05. New York, NY, USA: ACM, 2005, pp. 67-74.

T. Reps, G. Balakrishnan, and J. Lim, “Intermediate-representation recovery from low-level code,”
in Proceedings of the 2006 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based
Program Manipulation, ser. PEPM ’06. New York, NY, USA: ACM, 2006, pp. 100-111.

D. Strein, R. Lincke, J. Lundberg, and W. Lowe, “An extensible meta-model for program analysis,”
Software Engineering, IEEE Transactions on, vol. 33, no. 9, pp. 592-607, 2007.

H. J. Basten and P. Klint, “Software language engineering,” D. Gasevié¢, R. Lammel, and E. Wyk,
Eds. Berlin, Heidelberg: Springer-Verlag, 2009, ch. DeFacto: Language-Parametric Fact Extraction
from Source Code, pp. 265-284.

M. Hills, “Streamlining control flow graph construction with dcflow,” in Software Language Engineer-
ing, ser. Lecture Notes in Computer Science, B. Combemale, D. Pearce, O. Barais, and J. Vinju, Eds.
Springer International Publishing, 2014, vol. 8706, pp. 322-341.

P. Klint, T. van der Storm, and J. Vinju, “Rascal: A domain specific language for source code anal-
ysis and manipulation,” in Source Code Analysis and Manipulation, 2009. SCAM ’09. Ninth IEEE
International Working Conference on, Sept 2009, pp. 168-177.

P. Mayer and A. Schroeder, “Cross-language code analysis and refactoring,” in Source Code Analysis
and Manipulation (SCAM), 2012 IEEE 12th International Working Conference on, Sept 2012, pp.
94-103.

H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot, “Modisco: a generic and extensible framework
for model driven reverse engineering,” in Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering. ACM, 2010, pp. 173-174.

F. Heidenreich, J. Johannes, J. Reimann, M. Seifert, C. Wende, C. Werner, C. Wilke, and U. Ass-
mann, “Model-driven modernisation of java programs with jamopp,” in Joint Proceedings of the First
International Workshop on Model-Driven Software Migration, MDSM, 2011, pp. 8-11.



