
An extensible domain-specific

language for describing

problem-solving procedures

Bastiaan Heeren

Johan Jeuring

Technical Report UU-CS-2017-007

April 2017

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

An extensible domain-specific language for

describing problem-solving procedures

Bastiaan Heeren1 and Johan Jeuring1,2

1 Faculty of Management, Science & Technology, Open University of the Netherlands
P.O.Box 2960, 6401 DL Heerlen, The Netherlands

2 Department of Information and Computing Sciences, Universiteit Utrecht
Bastiaan.Heeren@ou.nl J.T.Jeuring@uu.nl

Abstract. An intelligent tutoring system (ITS) is often described as
having an inner loop for supporting solving tasks step by step, and an
outer loop for selecting tasks. Many task domains have problem-solving
procedures that express how tasks can be solved by applying steps or
rules in a controlled way. In this paper we collect established ITS de-
sign principles, and use the principles to compare and evaluate existing
ITS paradigms with respect to the way problem-solving procedures are
specified. We argue that problem-solving procedures need an explicit
representation, which is missing in most ITSs. We present an extensible
domain-specific language (DSL) that provides a rich vocabulary for ac-
curately describing procedures. We give three examples of tutors from
di↵erent task domains that illustrate our DSL approach and highlight
important qualities such as modularity, extensibility, and reusability.

1 Introduction

Intelligent tutoring systems (ITSs) are large and complex software systems that
typically take many years to build and improve. Full-blown ITSs o↵er a range of
functionality, including components for providing hints and feedback, modeling
student skills, tutoring strategies, course administration, tools for authoring con-
tent, etc. Developing an ITS and its instructional content requires many areas of
expertise, such as skills in educational design, software engineering, user experi-
ence, AI techniques, cognitive psychology, the task domain, and more. Software
architecture and solid design principles help us to deal with this complexity.

In this paper we look at the step-based inner loop of an ITS [25] that is
responsible for giving feedback and providing hints. An ITS with an inner loop,
such as Andes [27] or PAT [13], lets a user enter steps that she would take when
solving problems normally, without using a digital tutor. Such systems are al-
most as e↵ective as human tutors [26]. For many task domains, a problem-solving
procedure can be specified to provide hints and feedback for the inner loop. An
example of such a procedure is adding two fractions [17], which consists of the
following steps: (1) find the lowest common denominator (LCD), (2) convert
fractions to LCD as denominator, (3) add the resulting fractions, and (4) sim-
plify the final result. A more detailed analysis of these steps reveals that adding

two fractions that already have the same denominator is a special case (the first
two steps can be skipped), other multiples of the denominators also work (al-
though this is not preferred), step 2 consists of two smaller conversions, and the
simplification (step 4) is not always needed. How is this procedure encoded in
software? Can we access the high-level structure of the procedure, e.g. for pre-
senting an outline of the problem-solving procedure? This paper addresses these
questions by analyzing the relevant literature, and proposing an alternative.

The services that are o↵ered by di↵erent ITSs to support the inner loop are
very similar [25], but their internal structures and representations (i.e., how they
provide these services) are not. Non-functional requirements, also called quality
attributes, are concerned with how a system provides its functionality [8], and
they become increasingly important for larger systems. ITSs are no exception:
the internal structures and models for representing knowledge determine impor-
tant non-functional qualities such as reusability, modularity, and maintainability.

Various approaches and paradigms for intelligent tutoring exist. In particular,
there are model-tracing tutors [2], example-tracing tutors [1], constraint-based
tutors [16], and data-driven tutors [14]. A significant di↵erence between the
paradigms lies in the way the expert knowledge necessary for following the steps
of a student, is specified. Authoring tools built on top of these paradigms simplify
the construction of an ITS: they hide the underlying software layer from the
developer of an ITS, sometimes completely removing the need for programming
skills [19]. Using such a tool, the developer focuses on the tutoring interface and
the expert knowledge necessary for the tutor. Murray [19] clearly describes the
design space for authoring tools, and identifies design trade-o↵s. For example, the
advantage of an easy-to-use authoring environment often comes together with
reduced expressiveness, since the programming layer is hidden for the developer.

According to Nkambou et al. [20] there is a large biodiversity or even a Tower
of Babel in the field of authoring ITSs. As a result, after thirty years, existing
solutions are still not widely shared in the field, making it di�cult to find ade-
quate building blocks and guidance to build an ITS. The first contribution of this
paper is a critical evaluation of how problem-solving procedures are specified in
various ITS paradigms and authoring tools, based on reported design principles.
More specifically, we argue that it is important to have an explicit knowledge
representation for problem-solving procedures, which is absent in most ITSs.
We present an extensible domain-specific language (DSL) that provides a rich
vocabulary for accurately describing procedures and demonstrate how this has
been used to develop several tutoring systems, which is our second contribution.

This paper is organized as follows. Based on the scientific literature on tu-
toring systems and on software quality, Section 2 introduces a number of design
principles and best-practices for developing ITSs and authoring tools. Section 3
describes the most common ITS paradigms and evaluates how they follow the
principles. In Section 4 we propose to define explicit knowledge models for rep-
resenting problem-solving procedures in an extensible DSL. We present three
examples of task domains (Section 5) for which explicit problem-solving proce-
dures have been constructed successfully. Finally, Section 6 concludes this paper.

Anderson et al. (cognitive tutors) [3]
– Represent student competence as a production set (a)
– Communicate the goal structure underlying the problem solving (b)
– Promote an abstract understanding of the problem-solving knowledge (c)
– Adjust the grain size of instruction with learning (d)

Beeson (algebra and calculus tutor) [4]
– Cognitive fidelity (e)
– Glass box computation (f)
– Customize step size to individual user (g)

Murray (Eon authoring tools) [18]
– Represent instructional content and instructional strategies separately (h)
– Modularize the instructional content for multiple use and reuse (i)
– Explicitly represent abstract pedagogical entities (such as topics) (j)

Murray (analysis of authoring tools) [19]
– Instructional content should be modular and reusable (k)
– Authoring tools should provide customization, extensibility, and scriptability (l)
– Include customizable representational formalisms (m)

Aleven et al. (example-tracing tutors) [1]
– Support authoring of e↵ective, intelligent computer-based tutors (n)
– Facilitate the development of tutors across a range of applications domains (o)
– Support cost-e↵ective tutor development (p)
– Create tutors that are easy to maintain (q)

Table 1. Design principles for the inner loop

2 Design principles for the inner loop

The inner loop of an ITS is about the steps within a task and the services that are
available for tutoring [25]. As VanLehn points out, the behavior of systems with
an inner loop is surprisingly similar, but their internal structures can be very
di↵erent. We first collect design principles from successful ITSs and authoring
tools that provide insight into how to construct software that supports an inner
loop. We have found five papers [3, 4, 18, 19, 1] that explicitly describe such design
principles. We only include principles that are particularly relevant for the inner
loop. Quite a few more papers discuss authoring tools for ITSs (e.g. [17, 7, 20]),
but the former set specifically gives design principles for specifying the inner
loop. The set of selected design principles is listed in Table 1.

The internal structure of an ITS is often described in terms of four com-
ponents [21]: the expert knowledge, a student model, tutoring or instructional
strategies, and the user interface. This decomposition into four parts is a separa-
tion of concerns. In particular, instructional content and instructional strategies
are separated (h). The principles glass box computation (f: the student can see
how the system solves the problem step by step) and cognitive fidelity (e: the
system solves the problem in the same way as the student) are clear guidelines
for how to support the inner loop.

An accurate model of the target skill is needed [3], and this model should be
abstract (a) and explicit (j). Preferably, such a model is alsomodular and reusable

(i, k). Modular content can be used for multiple instructional purposes [19], and
thus promotes reuse. Repetitive and template-like content should be avoided:
an expressive representation helps to concisely describe content. Having modu-
lar procedures with an explicit representation simplifies decomposing a problem
into a set of goals and subgoals (b), and may help to promote an abstract un-
derstanding of the procedure (c).

The generality of a tool or technique is one dimension in the design space [19]
that determines how many application domains can be supported (o). However,
a tool cannot anticipate everything an author will want, and this is even more
problematic for general tools. Authoring tools should therefore be customizable,
extensible, and scriptable (l, m), just as all modern design and authoring software.
Important for the inner loop is the ability to customize the step size (from many
small rules to a few powerful rules) and the grain size of instruction (d, g). Such
customizations can be steered by authors, students, the student model, or a
combination.

The ultimate goal is to develop ITSs that support e↵ective tutoring (n), which
requires a flexible inner loop that can deal with multiple solution paths [1, 27].
Aleven et al. [1] explain that flexibility and avoiding repetitious authoring tasks
make ITS maintenance easier (q). A final consideration is that ITS development
should be cost-e↵ective (p), especially because estimations of 200-300 develop-
ment hours per hour of instruction are not uncommon [19]. Proven tactics to
reduce the development time are authoring tools that simplify content creation,
and reuse (e.g. by better interoperability between systems). Reusability is the
key to improving productivity and quality [8].

3 ITS paradigms

In this section we present approaches for developing an ITS and we discuss how
problem-solving procedures can be defined or authored. All of these approaches
have been successfully used to develop systems that have been tested and used
in practice. We evaluate the approaches using the design principles from the
previous section, and highlight their limitations.

Cognitive tutors (based on production rules). Many cognitive tutors have been
developed that are based on the ACT-R theory for simulating and understanding
human cognition [2, 3]. In this theory, declarative knowledge (facts) and proce-
dural knowledge (problem-solving behavior) are distinguished. An ACT-R tutor
uses an ideal student model to trace the steps of a student. This process is called
model tracing. The ideal student model is defined as a set of production rules
in the form of if-then statements. There are no further facilities for structuring
the production rules. The ACT-R software framework is developed in the Lisp
programming language, which can be used to introduce more structure.

The set of production rules describing the ideal student model in an ACT-R
tutor contains an implicit description of the problem-solving procedure. It is in

general very hard to extract an explicit description of the procedure from this
model. When a large number of rules are involved, understanding the interactions
between multiple rules a↵ected by the same facts can become very di�cult [24].
Subprocedures that are encoded as sets of production rules cannot be combined
without carefully considering the possible interactions. We conclude that (sets
of) production rules are not modular and not straightforward to reuse.

Model-tracing tutors (based on procedures). The Extensible Problem Specific
Tutor (xPST) system [7] is an authoring environment that enables non-program-
mers to create an ITS on top of an existing software application by providing
instruction inside this application. ‘Extensible’ in the system’s name refers to
the plug-in architecture for connecting to di↵erent software applications. An
ITS is specified in an xPST instruction file, which contains a sequence section
(among other sections) for specifying the problem-solving procedure. Four types
of operators are available for the developer: THEN, OR, AND, and UNTIL.
Similarly, ASTUS [22] represents hierarchical procedure knowledge as a graph.

In both systems, procedures are specified explicitly and they are modular.
Unfortunately, the set of operators is not expressive enough for describing pro-
cedures in more complex domains without repetition, and there is no way to
easily extend this set with more operators or traversals.

Constraint-based tutors. The constraint-based tutoring paradigm [16, 17, 23] sim-
plifies ITS development by focusing on conditions that should hold for correct
solutions, rather than defining how to reach such a solution. In this paradigm,
constraints have three parts: a relevance condition (when is it applicable), a sat-
isfaction condition (what should hold), and a feedback message that is reported
if the constraint is violated. The constraint-based approach can be very e↵ective,
especially for domains in which there is no clear path to reach a correct solution.
Although a constraint-based tutor can evaluate solutions, it is not capable of
actually solving the given problem itself. Hence, the cognitive fidelity (e) and
glass box computation (f) design principles are violated by this paradigm.

Example-tracing tutors. The Cognitive Tutor Authoring Tools (CTAT) [1] can
be used to create cognitive tutors without programming. The main idea behind
these tutors is that worked-out examples are used for tracing student steps.
Example-tracing tutors target particular tasks (e.g. solve 3x�6 = 8+x) instead
of a class of similar tasks (e.g. linear equations) and thus prefer usability and
a low entry level over productivity for trained users. The worked-out examples
are recorded in a behavior graph that contains sequences of steps. These graphs
can be generalized to increase the flexibility and recognize more solution paths,
for instance by making steps optional or unordered.

Behavior graphs make the problem-solving steps explicit, but there is no gen-
eral problem-solving procedure. The facilities for generalizing behavior graphs
are key in making the approach viable [1], but are provided on an ad-hoc basis
and are limited in expressiveness. The generalization step complicates creating a

tutor (for CTAT’s intended users), which once again demonstrates the inherent
design trade-o↵ between flexibility and usability [19].

Data-driven tutors. An approach that is recently gaining more and more at-
tention is to use historical student data for developing an ITS [14]. Successful
solutions from the past can be used to provide feedback and hints for students
in the present, which circumvents the need to create an expert model. A data-
driven tutoring system can be bootstrapped by experts providing missing data.
The data-driven approach has proven to work well in combination with AI and
machine-learning techniques for learning an expert model by demonstration.

Data-driven ITSs have no explicit expert model, which makes it hard for
instructors to customize a tutor. Instructors cannot express preferences, such as
shorter solution paths that are not found by the average student.

4 Problem-solving procedures

We now present a di↵erent approach to developing tutoring systems, which is
based on having an explicit representation (model) for problem-solving proce-
dures. This representation is based on operators that allows simple procedures
to be combined into more complex, composite procedures (in the spirit of the
composite design pattern). For instance, sequence (‘first do A, then B’, denoted
A ; B) and choice (‘do A or B’, denoted A | B) are operators that can be used
to create composite procedures. The primitive procedures (i.e., the leaf nodes in
the tree structure) are the steps or production rules that may or may not apply
in a particular situation. A fixed point construct is used for expressing recursive
procedures. Because of the operators, the models for describing problem-solving
procedures are modular, and therefore also reusable instructional content.

An advantage of having an explicit model is that it can be used for multiple
purposes and interpreted in di↵erent ways: the model can be executed step by
step, used to generate a student model, visualized (e.g. to increase the under-
standing), sent to another tool, etc. For an ITS, the stepwise execution of a
procedure is a particularly important interpretation of the model since this is
needed for generating next-step hints and worked-out solutions, and for tracing
student steps (services of the inner loop [25]). Figure 1 presents trace-based se-
mantics T for core procedures. Each trace represents a sequence of steps, where
symbol X denotes successful termination of the procedure. From these traces,
alternative next steps can be calculated, and worked-out solutions can be con-
structed. The technical details can be found elsewhere [10, 9].

We argue that this approach is extensible: new composition operators can be
added easily by defining their stepwise execution T , or by expressing the operator
in terms of existing operators. For example, performing a procedure s zero or
more times (the Kleene star) can be defined by many s = µx .(s ; x) | succeed. We
have defined many more useful operators (see Table 2), such as for interleaving
procedures, for making some part optional, and for various kinds of generic
traversals (for domains that have a notion of subterms). Such extensibility is
essential for supporting a diversity of task domains.

T (s ; t) = {x | x 2 T (s),X /2 x } [{xy | xX 2 T (s), y 2 T (t)} (sequence)
T (s | t) = T (s) [T (t) (choice)
T (µx.f (x)) = T (f (µx.f (x))) (fixed point)
T (r) = {✏, r , rX} (rule)
T (succeed) = {✏,X} (success)
T (fail) = {✏} (failure)

Fig. 1. Trace-based semantics for problem-solving procedures

operator description

s ; t first s, then t

s | t either s or t

succeed ever succeeding procedure

fail ever failing procedure

µx.f (x) fixed point combinator

label ` s attach label ` to s

many s apply s zero or more times

many1 s apply s one or more times

option s either apply s or not

operator description

not s succeeds if procedure s is not

applicable

repeat s apply s as long as possible

repeat1 s as repeat, but at least once

try s apply s once if possible

s . t apply s, or else t

somewhere s apply s at some location

bottomup s search location bottom-up

topdown s search location top-down

Table 2. Selection of composition operators

The composition operators can be considered a simple domain-specific lan-
guage (DSL) [5] for expressing problem-solving procedures. The DSL captures
common patterns that are found in procedures and provides a vocabulary for
these patterns. The rich vocabulary combined with the possibility to add more
operators make the language expressive. The DSL helps authors to articulate
problem-solving processes in their task domain.

For example, consider the procedure for adding two fractions from the intro-
duction, which uses four rules and can be expressed in the DSL as:

FindLCD ; many (somewhere Convert) ; Add ; try Simplify

This procedure produces the following stepwise solution for 1

2

+ 4

5

:

1

2

+ 4

5

FindLCD

=) 1

2

+ 4

5

Convert

=) 5

10

+ 4

5

Convert

=) 5

10

+ 8

10

Add

=) 13

10

Simplify

=) 1 3

10

The step for finding the LCD calculates the value used by Convert, and this step
may or may not show up in a learning environment, depending on step size and
the exact user interface. Similarly, sub-procedure many (somewhere Convert)
can be collapsed into a single step, which shows how the step size can be adjusted.

Our DSL for problem-solving procedures is very similar to other formalisms
for describing sequences. The DSL was mainly inspired by context-free grammars
and Hoare’s communicating sequential processes (CSP) [11]. Because of the sim-
ilarity with these formalisms, we can reuse techniques and definitions from these
formalisms, such as parsing and interleaving, and apply these in the context of
an ITS. Similar languages have been used in di↵erent application domains for
describing workflows, term rewriting, and proof tactics.

5 Examples of problem-solving procedures in ITSs

We illustrate how we have used the DSL for problem-solving procedures in a
number of tutoring systems that have been used in a classroom setting. These
systems cover three completely di↵erent domains: math, introductory program-
ming, and practicing communication skills. For each system, we describe how
the procedures are developed, and we discuss what the advantages are of having
explicit procedures. Where applicable, we discuss non-functional qualities of the
system such as reusability, interoperability, and customizability.

5.1 Math tutor

We have constructed an expert knowledge module for (high school) mathemat-
ics that covers many topics, such as solving equations, calculations, and linear
algebra. The problem-solving procedures are defined in an embedded domain-
specific language that o↵ers the operators in Table 2 (and many more), and also
provides access to the underlying programming language. The math domain al-
lows for a lot of reuse: for example, the procedure for solving a linear equation
is part of the procedure for quadratic equations. Many tasks have alternative
methods for solving, resulting in di↵erent configurations that can be used. Such
variation is easy to deal with in the DSL.

The expert knowledge module for math is used by at least three external
learning environments, which provides some evidence for the interoperability of
our approach. The module provides a number of request-response feedback ser-
vices [9] that are derived from the problem-solving procedures. These services are
used by the learning environments in di↵erent ways and with di↵erent choices
in how and when feedback and hints are o↵ered. For example, one environment
uses the hierarchical structure of a problem-solving procedure to automatically
decompose a problem into a group of subproblems when a student is not able
to solve the complete task. The Digital Mathematics Environment1 has an au-
thoring tool that allows content developers to tailor the feedback and hints that
are calculated by our expert knowledge module. For example, feedback messages
can be customized and certain inner loop services can be enabled or disabled.

5.2 Functional programming tutor

Programs are written step by step: starting with an empty (or skeleton) pro-
gram, the program gradually becomes more defined. The Ask-Elle programming
tutor [6] for Haskell was developed to help students with writing typical begin-
ner’s programs by giving feedback and hints (see Figure 2). Students can use
holes (?) in their functions for parts that are not yet defined. The steps towards
a full solution are refinement rules that replace a hole by some expression that
may contain new holes.

1 https://www.dwo.nl/site/index_en.html

Fig. 2. The Ask-Elle programming tutor for learning Haskell

Teachers can specify new programming tasks by providing one or more model
solutions for the task: these solutions follow good programming practice and are
written in the target language. Writing model solutions does not require any
knowledge about the structure or inner workings of the tutoring system. Model
solutions can be annotated by the teacher to customize and further specialize
the tutoring, for instance, to attach specific feedback messages to parts in the
solution, or to indicate that a certain language construct must be used.

For each model solution, a problem-solving procedure is generated in the
DSL, and these procedures are combined as choices. The final procedure can be
used to provide hints or to trace student steps, automatically disambiguating be-
tween the di↵erent model solutions. Tracing student programs in a programming
tutor is di�cult because there are many ways and variations to define something.
This variation is partly dealt with during generation: alternative solutions are
generated for standard functions and for some language constructs. The remain-
ing variation is tackled by aggressively normalizing the student program.

When a student takes o↵-path steps, the tutor can no longer guarantee that
these steps can lead to a correct solution. In such cases, the tutor uses testing to
decide about the correctness of the solution. This illustrates that a constraint-
based (testing) approach can complement the problem-solving procedures.

5.3 Serious game for communication skills

The serious game Communicate! [12] was developed for practicing interpersonal
communication skills between a healthcare professional and a patient. The player
is o↵ered a list of alternative sentences during a consultation with a virtual

Fig. 3. The Communicate! authoring tool for developing communication scenarios

patient. These sentences are the steps in the inner loop. During the consultation,
the player receives feedback by means of emotions shown by the virtual patient
and the patient’s reaction. After the consultation is finished, the player gets a
final score and feedback on how appropriate each step was.

Communicate! has a specialized scenario editor (see Figure 3), which enables
non-technical communication trainers to develop and test their communication
scenarios. This authoring tool allows trainers to develop a graph-like structure
for a particular scenario, but the tool also o↵ers scenario authors some domain-
specific features that are typical for consultations, such as:
– conditions under which certain options are o↵ered or not;
– parts of consultations that may be interleaved in any order;
– or that (part of) a consultation may be stopped at any point.

These scenarios are translated to stepwise procedures that control the sequenc-
ing. These procedures in the DSL give us very fine control over the structure of
consultation compared to dialog trees and avoid repeating subtrees.

6 Conclusions and future work

We have proposed to use a domain-specific language to describe problem-solving
procedures for an ITS. This language is extensible, and enables content authors
to articulate procedures in a modular and reusable way. We have exemplified
the DSL approach and its feasibility by describing three tutors for di↵erent task
domains that are based on this language. Other domains for which the DSL was
used are proposition logic, logical equivalence, axiomatic proofs [15], evaluating
expressions, and microcontroller programming. The DSL provides an explicit

representation for problem-solving procedures, which is missing in other ITS
paradigms. The need for an explicit, modular, and expressive representation is
supported by several design principles that are reported in the literature.

The DSL is general and independent of the task domain: it works best for
domains in which the order of steps must be controlled, with various degrees of
freedom in how strict the order must be. The procedures capture deep domain
knowledge that makes further reasoning steps possible. With respect to Murray’s
design space [19], our approach is positioned more towards productivity and
expressiveness than learnability. However, the specialized scenario editor for the
communication skills serious game, which is targeted at scenario authors without
technical skills, shows that the DSL can also be used as an intermediate layer
between a graphical editor and a tutoring system.

In the future, we want to simplify the authoring of procedures and provide
more guidance to authors. We want to approach this problem from several angles
(e.g. with graphical editors) because there is no ‘one size fits all’ solution. Ideally
we can use ITS techniques to generate feedback for content authors. We are also
interested in interpreting problem-solving procedures in new ways, for example,
to present procedures visually, to transform procedures into simpler or more
e�cient procedures (using algebraic laws for the composition operators), and to
calculate the coverage of procedures given a set of stepwise solutions.

We conclude the paper with observing that there is a trend away from having
problem-solving procedures in an ITS. The procedures are either absent (in
constraint-based and data-driven tutors), or very restricted (in authoring tools):
the motivation is mostly to make ITS development more cost-e↵ective. We claim
that investing in techniques that improve interoperability between systems and
large-scale reuse is a good alternative strategy that deserves more attention. The
DSL we presented is a small step in that direction.

References

1. V. Aleven, B.M. McLaren, J. Sewall, and K.R. Koedinger. A new paradigm for
intelligent tutoring systems: Example-tracing tutors. Journal of AIED, 19(2):105–
154, 2009.

2. J.R. Anderson, C.F. Boyle, A.T. Corbett, and M.W. Lewis. Cognitive modeling
and intelligent tutoring. Artificial intelligence, 42(1):7–49, 1990.

3. J.R. Anderson, A.T. Corbett, K.R. Koedinger, and R. Pelletier. Cognitive tutors:
lessons learned. Journal of the Learning Sciences, 4(2):167–207, 1995.

4. M.J. Beeson. Design principles of MathPert: Software to support education in al-
gebra and calculus. In N. Kajler, editor, Computer-Human Interaction in Symbolic
Computation, pages 89–115. Springer, 1998.

5. A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An annotated
bibliography. SIGPLAN Not., 35(6):26–36, 2000.

6. A. Gerdes, B. Heeren, J. Jeuring, and L.T. van Binsbergen. Ask-Elle: an adaptable
programming tutor for Haskell giving automated feedback. Journal of AIED, pages
1–36, 2016.

7. S.B. Gilbert, S.B. Blessing, and E. Guo. Authoring e↵ective embedded tutors: An
overview of the extensible problem specific tutor (xPST) system. Journal of AIED,
25(3):428–454, 2015.

8. I. Gorton. Essential software architecture. Springer, 2006.
9. B. Heeren and J. Jeuring. Feedback services for stepwise exercises. Science of

Computer Programming, 88:110–129, 2014.
10. B. Heeren, J. Jeuring, and A. Gerdes. Specifying rewrite strategies for interactive

exercises. Mathematics in Computer Science, 3(3):349–370, 2010.
11. C.A.R. Hoare. Communicating sequential processes. Prentice-Hall, Inc., 1985.
12. J. Jeuring, F. Grosfeld, B. Heeren, M. Hulsbergen, R. IJntema, V. Jonker, N. Mas-

tenbroek, M. van der Smagt, F. Wijmans, M. Wolters, and H. van Zeijts. Com-
municate! — a serious game for communication skills. In EC-TEL 2015, volume
9307 of LNCS, pages 513–517. Springer, 2015.

13. K.R. Koedinger, J.R. Anderson, W.H. Hadley, and M.A. Mark. Intelligent tutoring
goes to school in the big city. Journal of AIED, 8:30–43, 1997.

14. K.R. Koedinger, E. Brunskill, R.S.J.d. Baker, E.A. McLaughlin, and J. Stamper.
New potentials for data-driven intelligent tutoring system development and opti-
mization. AI Magazine, 34(3):27–41, 2013.

15. J. Lodder, B. Heeren, and J. Jeuring. Generating hints and feedback for Hilbert-
style axiomatic proofs. In SIGCSE 2017, pages 387–392, 2017.

16. A. Mitrovic, B. Martin, and P. Suraweera. Intelligent tutors for all: The constraint-
based approach. Intelligent Systems, IEEE, 22(4):38–45, 2007.

17. A. Mitrovic, B. Martin, P. Suraweera, K. Zakharov, N. Milik, J. Holland, and
N. McGuigan. ASPIRE: An authoring system and deployment environment for
constraint-based tutors. Journal of AIED, 19(2):155–188, April 2009.

18. T. Murray. Authoring knowledge-based tutors: Tools for content, instructional
strategy, student model, and interface design. Journal of the Learning Sciences,
7(1):5–64, 1998.

19. T. Murray. An overview of intelligent tutoring system authoring tools: Updated
analysis of the state of the art. In T. Murray, S.B. Blessing, and S. Ainsworth,
editors, Authoring Tools for Advanced Technology Learning Environments, pages
491–544. Springer, 2003.

20. R. Nkambou, J. Bourdeau, and V. Psyché. Building intelligent tutoring systems:
An overview. In R. Nkambou et al., editor, Advances in Intelligent Tutoring Sys-
tems, SCI 308, pages 361–375. Springer, 2010.

21. H.S. Nwana. Intelligent tutoring systems: an overview. AI Review, 4(4):251–277,
1990.

22. L. Paquette, J.-F. Lebeau, G. Beaulieu, and A. Mayers. Designing a knowledge
representation approach for the generation of pedagogical interventions by MTTs.
Journal of AIED, 25(1):118–156, 2015.

23. R. Sottilare, A. Graesser, X. Hu, and K. Brawner, editors. Design Recommen-
dations for Intelligent Tutoring Systems. Volume 3: Authoring Tools and Expert
Modeling Techniques. Adaptive Tutoring Series. 2015.

24. R.N. Taylor, N. Medvidovic, and E.M. Dashofy. Software Architecture: Founda-
tions, Theory, and Practice. Wiley Publishing, 2009.

25. K. VanLehn. The behavior of tutoring systems. Journal of AIED, 16(3):227–265,
2006.

26. K. VanLehn. The relative e↵ectiveness of human tutoring, intelligent tutoring sys-
tems, and other tutoring systems. Educational Psychologist, 46(4):197–221, 2011.

27. K. VanLehn, C. Lynch, K. Schulze, J.A. Shapiro, R. Shelby, L. Taylor, D. Treacy,
A. Weinstein, and M. Wintersgill. The Andes physics tutoring system: Lessons
learned. Journal of AIED, 15(3):147–204, 2005.

