
Towards the adoption of DevOps in
software product organizations: A maturity
model approach

Rico de Feijter
Rob van Vliet
Erik Jagroep
Sietse Overbeek
Sjaak Brinkkemper

Technical Report UU-CS-2017-009

May 2017

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Towards the adoption of DevOps in software

product organizations: A maturity model

approach

Rico de Feijter1, Rob van Vliet2, Erik Jagroep2, Sietse Overbeek1, Sjaak Brinkkemper1

1Utrecht University, Utrecht, The Netherlands
{R.deFeijter,S.J.Overbeek,S.Brinkkemper}@uu.nl

2Centric, Gouda, The Netherlands
{Rob.van.Vliet,Erik.Jagroep}@centric.eu

Abstract. This technical report describes a study conducted at Centric and
concerns the adoption of DevOps in software product organization (SPOs),
which are organizations that produce software for multiple customers and thus
need to take into account the wishes and needs from all these customers, while
developing software. For these SPOs there is a need to constantly release
faster to customers in order to preserve customer satisfaction in the form of
being able to quickly release new features and provide bug fixes.

However, releasing software at a faster pace comes with the need to better
align the concerns of stakeholders that reside in the chain of releasing soft-
ware. In particular, development and operations need to be aligned as these
parties traditionally have arranged their processes differently from one another
and work in silos. However, in order to create a smooth and fast end-to-end
flow when it comes to releasing software, DevOps provides a way to deal with
the aforementioned and takes into consideration not only development and op-
erations, but also other stakeholders such as quality assurance (Q/A), product
management and information security.

When further observing DevOps, the phenomenon touches upon both cultural
and technical matters to attain fast release of software, has a wide scope and
could be seen as a movement, but is still young and not yet formally defined.
Also, no adoption models or fine-grained maturity models showing what to con-
sider to adopt DevOps and how to grow more DevOps mature were identified.
As a consequence, this research attempted to fill these gaps and consequently
brought forward six DevOps drivers and sixty three capabilities aiming to adopt
DevOps to a mature extent. These sixty three capabilities form part of six-
teen focus areas, which in turn belong to three perspectives. This combination
of drivers, perspectives, focus areas and capabilities was used to construct a
DevOps competence model showing the areas to be taken into account in the
adoption of DevOps. Next to that, the perspectives, focus areas and capabil-
ities were used to create a maturity model showing a fine grained path to be
followed in order to reach a mature DevOps state.

In order to come to the artifacts described above, several data collection meth-
ods were leveraged, among which are semi-structured interviews at three dif-
ferent organizations and a literature review. Other than that, two validation
rounds were conducted of which the first round encompassed expert opinion

sessions in which the DevOps competence model and the perspectives, focus
areas and capabilities were validated. The second validation round entailed
expert opinion sessions in which the focus areas, capabilities and the maturity
model were validated. Finally, a case study was carried out with the final capa-
bilities, which were processed in a self assessment that was sent out to nineteen
assessees. Of these nineteen assessees, eight assessees filled in the self assess-
ment, which ultimately ended up in seven useful filled in assessments for which
maturity profiles could be made that showed the assessees the state of DevOps
maturity and the next steps to be taken in order to grow more DevOps mature.

Even though initial results showed that the artifacts were found applicable,
many opportunities for future research are still left including the gathering of
a richer dataset, a more profound validation of the perspectives, focus areas,
capabilities, DevOps competence model and maturity model and a wider case
study that evaluates all capabilities to their fullest extent in different settings.
Other future research could aim at situational factors and deeper scrutiniza-
tion of the intertwinement of product management with DevOps.

Keywords: DevOps, Competence model, Maturity model

1 Introduction

This technical report covers a study regarding the adoption DevOps in software
product organizations (SPOs), which are organizations that produce software for
multiple customers and also install and maintain the software for these customers
in their own datacenter or at the customer’s site, which differs from a situation
in which an organization develops software for its own sake. Yet, the tendency
is that increasingly more SPOs opt for cloud-based software that is installed and
maintained at a central location being it in an own datacenter or at another central
location.

More concretely, SPOs move away from on-premise, and move to the cloud (Pahl,
Xiong, & Walshe, 2013) that allows for faster releasing (Lawton, 2008). However,
when striving for faster releasing, stakeholders residing in a SPOs are also required
to collaborate more closely (Wettinger, Andrikopoulos, & Leymann, 2015). At this
point, DevOps comes into play. Moreover, the term concerns improving the collab-
oration between stakeholders with a special focus on development and operations to
achieve fast high quality releases (Waller, Ehmke, & Hasselbring, 2015;Wettinger,
Breitenbücher, & Leymann, 2014b).

Moreover, the stakeholders involved in this process stretch from product manage-
ment, which is concerned with requirements management and release planning re-
lated activities, up to and including the customer. DevOps thus has a wide scope
and, in fact, could touch upon the entire organization (Zwieback, 2014). However,
DevOps in particular focuses on the stakeholders concerned with the development
of the software, the maintenance and monitoring of the infrastructure on which the
software runs and support.

Despite the increasing popularity of DevOps and organizations having an under-
standing of the motivations to adopt DevOps and the advantages the notions brings
(Smeds, Nybom, & Porres, 2015), DevOps requires further investigation, as there
is still no clear overview of DevOps practices that enables organizations to adopt
DevOps (Lwakatare, Kuvaja, & Oivo, 2016). In the same vein, there are hardly
processes and methods available that prescribe how to implement DevOps (Erich,
Amrit, & Daneva, 2014) making it difficult for organizations to decide what practices
to adopt, how to adopt these and how to improve incrementally. Rong, Zhang, and
Shao (2016) also underpin this fact by stating that no scientifically validated models
for DevOps that aid organizations in implementing DevOps and thus maturing in
DevOps in a step wise way exist. Also, while many sources address the existence
of a relationship between DevOps and the remainder of the organization, it often
remains unclear what this relationship exactly entails. Kim, Behr, and Spafford

1

(2014), for instance, mention the relationship with product management, but only
detail this at the level of adopting small batch sizes, among others.

To make an attempt to fill the gap described above, this research aims to create
a DevOps competence model that incorporates so-called focus areas, which show
SPOs the areas to be considered in the adoption of DevOps and is inspired by
Bekkers, Van de Weerd, Spruit, and Brinkkemper (2010). Another artifact aimed to
be established in this research is a maturity model, which is inspired by Van Steen-
bergen, Bos, Brinkkemper, Van de Weerd, and Bekkers (2013) and builds further
on the contents of the DevOps competence model and incorporates a growth path
aiding SPOs in moving towards a mature DevOps situation.

The chapters that follow in this technical report are the theoretical framework,
which positions the DevOps topic and the instruments to be used in order to realize
the aforementioned artifacts. Next, the research approach chapter describes the
path to be followed in order to come to research results and also reflects on this
path by describing the research approach results. Thereafter, the journey towards
the DevOps maturity model chapter explains the research results, whereafter the
case study chapter reports on the case study results. Subsequently, the discussion
chapter describes the main contributions and limitations of the conducted study.
At last, the technical report concludes with outlining the conclusions and future
work.

2

2 Theoretical framework

In this chapter, an overview is provided of literature to position the research topic.
To this end, the literature review starts with an explanation of DevOps. Then, after
outlining DevOps, the emphasis is put on DevOps models and competence models,
after which the theoretical framework concludes with describing DevOps maturity
models and maturity models in general.

2.1 DevOps

For decades, organizations have been looking for new ways to improve their software
development processes to keep up with business and market demands (Boehm, 1988;
Haley, 1996; Herden, Farias, & Albuquerque, 2016). To this end, organizations have
been embracing new ways of working to develop software at a higher pace. It is, for
instance, a well-known fact that many organizations have shown interest in adopting
an agile way of developing to face ever changing requirements (Capodieci, Mainetti,
& Manco, 2014). Aside from optimizing software development, organizations have
also been looking into improving other facets of Information Technology (IT). For
instance, many companies have adopted frameworks such as the Information In-
frastructure Library (ITIL) encompassing best practices that aim to enhance ICT
service management and structure operational processes (Potgieter, Botha, & Lew,
2005).

Nevertheless, traditional organizations have often had their development and opera-
tions activities carried out by siloed development and operations units, each having
their own goals. In such a situation, development is tasked with creating new func-
tionality and fixing bugs, whilst operations is tasked with maintaining a reliable
infrastructure that enables software to run stably and giving customer support. In
other words, both development and operations strive for the opposite, as develop-
ment strives for change, whereas operations strives for stability. This is problematic
since they both are dependent on one another, when it comes to releasing soft-
ware in a timely manner. Therefore, it comes as no surprise that in the process
of both stakeholders achieving their different goals, frictions come across because
of divergent motivations, processes and tooling, which demotivates stakeholders to
cooperate (Hüttermann, 2012).

The aforementioned, thus, makes clear that cooperation between development and
operations is of crucial importance to create a smooth end-to-end flow. More specif-
ically, if development and operations are not aligned, the whole process of releasing

3

functionality and processing feedback will slow down, which results in a slower re-
sponse to customer demand(Ward & Zhou, 2006). Hüttermann (2012) makes the
alignment between the aforementioned parties clear by presenting four DevOps ar-
eas in a so called DevOpsAreaMatrix, which is adopted in Figure 2.1. Here, the
first area addresses that development and operations should collaborate on deliv-
ering functionality to production. The second area incorporates the feedback loop
from operations back into development in the form of streaming information such
as runtime behavior from operations back to development. The third area aims
at embedding development into operations by having development focus on non-
functional requirements that are concerned with operations. The fourth and last
area stipulates that DevOps strives to embed operations into development by hav-
ing operations share knowledge with developers on the feasibility of solutions under
development.

Dev Ops

Area 1: Extend development to operations

Area 2: Extend operations to development

Area 3: Embed development into operations

Area 4: Embed operations into development

Figure 2.1: The DevOps area matrix adapted from Hüttermann (2012).

However, not only development and operations stakeholders fall under the DevOps
umbrella. Rather, DevOps aims at achieving an overall smooth end-to-end flow. The
notion, therefore, also takes into consideration other stakeholders involved in releas-
ing software such as quality assurance (QA), product management and information
security (Kim, Behr, & Spafford, 2014; Iden, Tessem, & Päivärinta, 2011; Swartout,
2014). As a result, all stakeholders in the DevOps movement should be aligned to
create an overall smooth end-to-end flow (Kim, Behr, & Spafford, 2014).

SPOs should thus consider DevOps to streamline the organization in order to cre-
ate a better end-to-end flow. However, when observing the DevOps notion more
profoundly, literature shows that the term still lacks a formal definition (Smeds,
Nybom, & Porres, 2015; Bass, Weber, & Zhu, 2015), but is perceived as a move-
ment encompassing practices that aim to establish a culture of collaboration between
stakeholders involved in the software development process wherein development and
IT operations, as engaging parties, receive most of the attention (Kim, Humble, De-
bois, Allspaw, & Willis, 2016; Plwakatare, Kuvaja, & Oivo, 2015). Apart from
the enhancement of collaboration between stakeholders, another aim of DevOps
concerns releasing software faster and reacting on feedback faster in order to bring
added value to the customer at a fast pace and therewith preserve customer satisfac-

4

tion (Riungu-Kalliosaari, Mäkinen, Lwakatare, Tiihonen, & Männistö, 2016; Kim,
2013; Dyck, Penners, & Lichter, 2015).

Furthermore, the literature above shows that DevOps is perceived as a movement,
which indicates that DevOps is not a fixed process, tool or technology, but rather a
mindset in which trust and respect between stakeholders is a fact and collaboration
between stakeholders takes place in order to work towards a release in a cooperative
fashion (Davis & Daniels, 2016). Because DevOps is described as a movement, the
notion is continuous and not prone to aging out.

Other observations in literature make clear that DevOps supports intentional pro-
cesses that accelerate the rate by which businesses realize value (Davis & Daniels,
2016). To achieve this, DevOps advocates practices pertained to culture (e.g. sus-
taining a culture of trust and respect (Davis & Daniels, 2016)), collaboration (e.g.
adopting cross functional teams (Kim et al., 2016)), lean thinking (e.g. using the
value stream mapping technique to optimize the DevOps movement (Kim, Behr, &
Spafford, 2014) and automation (e.g. automating builds, tests and deployments to
release software quicker (Hüttermann, 2012)). In addition, DevOps aims to measure
the effect of technical and social change (Davis & Daniels, 2016). This implies that
DevOps also encompasses practices that link to monitoring and measurement, which
engender continuous improvement (Fitzgerald & Stol, 2017).

More concretely, practices described in literature relate to monitoring and measuring
technical processes by using techniques such as application performance monitoring
from which resulting data can be leveraged to provide fast feedback to, for in-
stance, product management and development (Plwakatare, Kuvaja, & Oivo, 2015;
Hüttermann, 2012). As for social change, Davis and Daniels (2016) show that col-
laboration between people can be monitored and measured by, for instance, using
peer reviews in order to improve how people socially interact.

As said before, DevOps aims to react faster on customer demand, which includes re-
leasing software faster and responding to feedback faster. However, doing so requires
quality to be in check. Moreover, since release cycles are shorter and a more agile
way of working is recommended by DevOps, software quality becomes a concern.
Khomh, Dhaliwal, Zou, and Adams (2012) even claim that fewer bugs are fixed
when using a rapid release model in lieu of a traditional release model. To handle
this, lean thinking can again be employed to quickly find and eliminate bottlenecks
that create waste in the DevOps movement at an early stage. Lean thinking in this
form is then reflected in broken build detection mechanisms, which make it possible
to detect broken software builds at an early stage and thus allows them to be fixed
early in the process (Fitzgerald & Stol, 2014). Also, value stream mapping could
again be useful to identify and eliminate bottlenecks standing in the way of releasing
high quality software (Kim et al., 2016).

However, practices associated with automation also contribute to better quality,
since the automation of activities playing a role in the DevOps movement, such as

5

build creation, testing, and deployment, take away less consistent manual interven-
tions, which are known to be more error prone (Virmani, 2015; Chen, 2015).

Yet, not only practices purely aimed at lean thinking and automation contribute
to better quality. In fact, continuous improvement through monitoring and mea-
surement contribute to better quality as well (Orzen & Paider, 2016;Meissner &
Junghanns, 2016). After all, monitoring and measurement might reveal that a piece
of software needs to be improved as it causes an increased CPU load, to name an
example. Perceiving the “soft” side, on the other hand, monitoring and measure-
ment might reveal that better collaboration between development and operations is
needed, which benefits the quality as well (Rossberg, 2014).

As it turns out from the above, DevOps is a notion that covers many aspects.
Therefore, to bring structure to the DevOps notion, the aspects mentioned in this
section are summarized in a semantic net, which is used to visualize key concepts
(Bock, Kattenstroth, & Overbeek, 2014) and can be consulted in Figure 2.2.

Stakeholder DevOps
movement

Collaboration

Lean

Fast high
quality release

Customer
satisfaction

Continuous
improvement

is involved
in

contributes
to

engendersIs preserved
by

Automation

involves

involves

involves

involves

Culture
involves

Figure 2.2: Semantic net of key concepts proposed by Bock et al. (2014) applied to
the DevOps domain.

The semantic net shows the interrelation of the concepts that fall into the domain
of DevOps. Besides that, the contents (i.e. the concepts and the relationships) of
the semantic net are shaped by the literature used in this section to outline DevOps.
The observation was, for instance, made that automation forms part of DevOps and
is needed to achieve higher quality. This fact led to the decision to mark automation
as a concept that is involved in the concept ”DevOps movement” and plays a role
in contributing to ”fast high quality release”. This way of thinking is also applied
in the realization of the remainder of the semantic net.

6

All in all, DevOps appears to be promising and attempts to bring different worlds
together to create a better organization and a more healthy environment in which
satisfied stakeholders thrive. Moreover, literature clarified that DevOps is about
culture, technology and process improvement and houses practices related to all
these fields that aid in making organizations more effective and letting people feel
more comfortable.

2.2 Models

As a part of the research concerns developing a model for DevOps, it is important
to first gain knowledge of the models already available in literature. However, when
observing the literature for DevOps models, it quickly becomes clear that models
pertained to DevOps are scarce. One of the models found is described by Ebert,
Gallardo, Hernantes, and Serrano (2016). Their model visualizes a V shaped ab-
straction and is made up of eight focus areas of which each focuses on a part that is
of interest to DevOps. As such, the model incorporates focus areas regarding, among
others, requirements engineering, which concerns the process of discovering, docu-
menting and managing the requirements for a computer-based system (Sommerville
& Sawyer, 1997), static code analysis (i.e. the process of checking the code of a
program without executing the program (Louridas, 2006) and continuous delivery
(i.e. keeping a software build in an always releasable state (Shahin, Babar, & Zhu,
2016). Further, the model underpins that feedback should be gathered from the
field, which is an important aspect of DevOps as DevOps advocates the adoption of
feedback loops to quickly obtain and process user feedback (Shahin, Babar, & Zhu,
2014).

However, when looking at the models available in grey literature, it is denoted
that DevOps is represented in many forms, of which some stress the collaboration
between development, quality assurance, and operations (”DevOps”, 2017) while
others put the emphasis on the process from product management up to and in-
cluding monitoring the application while it is running in production (Moss-Bolaños,
2016). However, these models have one thing in common, which is expressed by the
fact that all models visualize DevOps from a high abstraction level.

Yet, not all DevOps models residing in literature describe DevOps from a broad per-
spective. For example, another DevOps model found during the literature review is
presented by Wahaballa, Wahballa, Abdellatief, Xiong, and Qin (2015) and views
DevOps not from an abstract point of view, but from a detailed point of view focus-
ing purely on the technical aspects interwoven with DevOps that aim at workflow
execution, to name an example.

Still, as previously mentioned in the introduction chapter, it is in the interest of this
research to create a specific type of model, which concerns a competence model that
shows the focus areas an organization should concentrate on to fulfill the adoption

7

of DevOps. Worth to mention here, however, is that the aim of this study concerns
the creation of a balanced DevOps competence model that views DevOps from a
broad perspective, but still provides sufficient detail to give SPOs an understanding
of the areas to concentrate on in order to adopt DevOps.

The motivation for choosing this type of model lies in the fact that earlier research
by Bekkers et al. (2010) has shown that this type of model allows for presenting focus
areas in perspectives, which means that a competence model allows for presenting
contents at different abstraction levels. The same work showed that the competence
model helps in establishing a maturity model, which is the other artifact aimed to
be constructed in this research. More concretly, the model constructed by Bekkers
et al. (2010) is shown in Figure 2.3, where it can be discerned that the model is com-
posed of all areas that are of importance to software product management (SPM),
which is the domain that is concerned with requirements management, release plan-
ning and new product launches, among others (Bekkers, Van de Weerd, Spruit, &
Brinkkemper, 2006).

Market

Portfolio management

Product planning

Release planning

Requirements gathering

Market
analysis

Product
lifecycle

management

Partnering &
contracting

Roadmap
intelligence

Product
roadmapping

Core asset
roadmapping

Requirements
prioritization

Scope change
management

Build
validation

Release
definition

Release
definition
validation

Launch
preparation

Requirements
gathering

Requirements
identification

Requirements
organizing

Customers

Partners

Company board

Sales

Marketing

Research &
innovation

Development

Support

Services

Software Product Management
External

stakeholders
Internal

stakeholders

Figure 2.3: Software product management competence model adapted from Bekkers
et al. (2010)

As can be seen from Figure 2.3 the areas relevant to SPM are represented in white
boxes and are known as focus areas, which are defined as “a well-defined coherent
subset of a functional domain”(Van Steenbergen et al., 2013, p. 45). In case of
Figure 2.3, this domain concerns SPM. Aside from that, Figure 2.3 shows that focus
areas are adopted in perspectives that Bekkers et al. (2010) call business functions,
which represent the structure of having a portfolio with products that, in turn, are
made up of releases, while releases are made up of requirements.

8

When viewing this in the context of DevOps, no such models or similar models can
be found in both scientific and grey literature. However, this research was carried
out at a Dutch SPO termed Centric, where an internal DevOps competence model
was created that was based on the structure of the SPM competence model. This
model is shown in Figure 2.4.

Market

Conditions and supporting processes

Scrum

Architecture Infrastructure
& tooling

Standards &
non-functional
requirements

Ceremonies Admini
strations

Alignment &
integration

Requirements
prioritization

Scope change
management Build validation

Customers

Partners

Company board

Sales

Marketing

Research &
innovation

Development

Support

Services

External
stakeholders

Internal
stakeholders

Delivery chain

Software as as ervice / Hosting

Managed
services

Technical
requirements Deployment

Continuous
processing

Test
automation

Measuring &
monitoring

Figure 2.4: Internal DevOps competence model

The internal DevOps competence model from Centric is important in executing this
research in that a part of its contents are used in the construction of the enriched
DevOps competence model that follows from this research. Furthermore, as can
be perceived, the model follows a similar form as the SPM competence model and
covers focus areas that deal with areas related to DevOps. Also the layered structure
is adopted in this model, albeit the layered structure bears no meaning. That is, the
layered structure is not set up with a certain meaning in mind, which is in contrast
with the SPM competence model, where the perspectives form a hierarchy from
portfolio to requirements level. In the case of the initial DevOps competence model,
however, the perspectives only represent a generalized name for the focus areas that
reside in the perspectives. Furthermore, the stakeholders are directly adopted from
the SPM competence model, as are the arrows that point from and to the internal
and external stakeholders.

From the model, it thus becomes clear that Centric purely focuses on the focus areas
and their contents. Moreover, each of the focus areas encompasses capabilities, which
are also known as control points within Centric and prescribe what the business units
of Centric should do to comply with DevOps.

In brief, the model encapsulates a conditions and supporting processes perspective

9

that incorporates control points related to the architecture of a product, software
tooling and environments on which software runs. Further, code quality standards
and nonfunctional requirements such as performance and security requirements,
which should be considered during requirements gathering, are reflected in the per-
spective. The next perspective is very specific to the Centric context and concerns
Scrum, which forms the software development method that is followed by Centric.
Focus areas included in this perspective entail control points that prescribe the im-
plementation of scrum. As a consequence, development ceremonies such as daily
standups to communicate about impediments and progress and planning poker to
estimate work to be done are prescribed as control points and, in addition, the ad-
herence to a product backlog, which includes work to be done to develop a product,
and a sprint backlog, which forms a subset of the product backlog and describes
work to be done during sprints, is prescribed. Finally, control points dealing with
alignment are prescribed such as the use of scaled agile frameworks to coordinate
multiple scrum teams working on a single product. The next perspective is con-
cerned with the delivery chain and prescribes the implementation of continuous
processing mechanisms such as continuous delivery. Next to that, test automation
is part of the perspective and incorporates control points related to various tests
that aim to test components of the code and non functionals, among others. Also,
metrics for the development and operations processes are considered such as ve-
locity and service level agreement metrics. Finally, the last perspective prescribes
focus areas that relate specifically to the context of Centric. In particular, managed
services, for instance, is the department of Centric that manages Centric its data
center and therefore the focus area prescribes guidelines this department should take
into account. On the other hand, infrastructural control points regarding SaaS and
deployment matters such as the need for having rollback procedures in place are
discussed in the perspective.

2.3 Maturity models

Apart from the competence model, a maturity model is to be made that shows
PSOs how to mature in DevOps. While scrutinizing the literature, it becomes clear
that several maturity models exist with regard to DevOps. For instance, Mohamed
(2015) presents a DevOps maturity model, which is adopted in Figure 2.5.

As can be seen the model consists of five levels that denote a gradual increase
in maturity. More concretely, the model comprises an initial, managed, defined,
measured, and optimized level that denote an increase in maturity with respect to
four dimensions, which are known as communication, automation, governance, and
quality management. When looking at communication in the context of the first
level, there are no clear responsibilities between teams defined, while at level five
collaboration between teams is present and constantly improved. When shifting the
focus to automation, no automation is in place at level one and thus processes are
carried out manually, whereas in level five processes are automated and continuously

10

Ad hoc
communication

No automation

Uncontrolled
governance

Quality standard not
exists

Controlled
communication and
collaboration

Ad-hoc automation

Not standardized
governance

Ad hoc quality
management

Standard
communication
process

Standardized
automation

Standardized
governance

Quality standard
exists

Communication
metrics exist for
improvement

Automation metrics
exist to assess
progress against
business goals

Governance metrics
to measure process
performance

Quality metrics to
measure
improvement
performance

Constructive
communication,
environment, tools,
processes

Smart automation to
maximize
throughput

Optimized
governance self
adaption

Continuous quality
improvement/ self
healing

ManagedInitial Defined Measured Optimized

Figure 2.5: DevOps maturity model adapted from Mohamed (2015)

improved by analyzing metrics. The next aspect, known as governance, also starts
at level one and covers that processes are unpredictable at this level, meaning, for
instance, that it is difficult to determine when software is in line with the demands of
the market so that it can be released. At level five, these processes are predictable
and it is easier to determine the need of the market as usage data is constantly
collected from production by conducting experiments. This data then forms input
to adjust to market demands at an early stage. The last dimension in which an
organization can mature by using this model is quality. At the first level no quality
standards, such as standards for testing exist, while at the fifth level developers test
and evaluate the system when it operates in production by deliberately initiating
failures into the system.

When further observing the literature, other maturity models are present for De-
vOps. However, it is worth mentioning that the model outlined above and other
models detected in grey literature, for instance the models presented by Inbar et
al. (2013), Beal (2014) and Capgemini (2015) all incorporate five levels to denote
progression in maturity.

For example, the model proposed by Mohamed (2015) is based on the capability
maturity model (Constantinescu & Iacob, 2007), which is known to be a five-level
maturity model that distinguishes five levels of maturity, as the name suggests.
Nonetheless, the drawback of CMM is that no more than five levels of maturity
can be distinguished and that, because of the fact that these models are generic in
nature, no step by step guide is incorporated that shows a growth path to become
more mature (Van Steenbergen, Bos, Brinkkemper, Van de Weerd, & Bekkers, 2013).
To overcome this, Van Steenbergen et al. (2013) present a focus area maturity model,
that allows for defining smaller steps to grow in maturity and also allows for defining

11

interdependencies among process steps. As a result, such a model provides better
guidance on how to become more mature in a certain domain.

To further clarify the form such a maturity model takes, Figure 2.6 illustrates the
maturity model from the SPM domain. It can be discerned from this model that
the business functions and focus areas adopted in Figure 2.3, are also present in
Figure 2.6, which denotes that the maturity model is based on the contents of the
competence model.

Focus area 0 1 2 3 4 5 6 7 8 9 10

Market analysis A B C D E

Partnering & contracting A B C D E

Product lifecycle management A B C D E

Roadmap intelligence A B C D E

Core asset roadmapping A B C D

Product roadmapping A B C D E

Requirements prioritization A B C D E

Release definition A B C D E

Release definition validation A B C

Scope change management A B C D

Build validation A B C

Launch preperation A B C D E F

Requirements gathering A B C D E F

Requirements identification A B C D

Requirements organizing A B C

Requirements management

Portfolio management

Product planning

Release planning

Figure 2.6: SPM maturity model adapted from Bekkers et al. (2010)

Furthermore, capabilities belonging to the focus areas reside in the model and are
denoted by a letter. A capability is defined as “the ability to achieve a predefined
goal (Van Steenbergen et al., 2013, p. 45). Other than that, capabilities are po-
sitioned in the matrix relative to one another and together form a growth path.
For example, when looking at Figure 2.6, level one is achieved when requirements
are gathered and registered (capability A of requirements gathering) and informa-
tion about a new release is communicated to internal stakeholders (capability A of
launch preparation). From there, an organization can reach a higher maturity level
by ensuring that all capabilities of a higher level are implemented.

12

Nevertheless, it could well be the case that an organization is very mature in one
of the focus areas, while others are underdeveloped. This is depicted in the ma-
turity profile in Figure 2.7 that is plotted on the Dynamic Architecture Maturity
Matrix from Van Steenbergen, Schipper, Bos, and Brinkkemper (2010). who as-
sessed the maturity of several organizations in the enterprise architecture domain,
thereby indicating that this type of maturity model can also be used as an assessment
means.

Focus area 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Development of architecture A B C

Use of architetecture A B C

Alignment with business A B C

Alignment with development process A B C
Alignment with operations A B C

Relation to the as-is state A B

Roles and responsibilities A B C

Coordination of developments A B

Monitoring A B C D

Quality management A B C

Maintenance of the architectural process A B C

Maintenance of the architectural deliverables A B C

Commitment and motivation A B C

Architecture roles and training A B C D

Use of architectural method A B C

Consultation A B C

Architectural tools A B C

Budgetting and planning A B C

Figure 2.7: DyAMM maturity profile adapted from Van Steenbergen et al. (2010)

As can be seen from Figure 2.7, the organization where the maturity assessment
took place is well developed in the area of alignment with the development process,
but underdeveloped in the development of architecture, alignment with business and
commitment and motivation focus areas.

This indicates that this organization still resides at the first maturity level. The
organization thus first needs to improve the underdeveloped areas to reach a higher
maturity level. If, for instance, the focus area regarding use of architecture would be
developed to level two then the organization has reached an overall maturity level of
two, since all capabilities in level two are then achieved. From this it also becomes
clear that the maturity model can leveraged as an assessment instrument.

13

3 Research approach

This chapter outlines the research approach that is planned to be followed and re-
flects on its execution phase. As such, this chapter starts with describing Centric, a
software product organization that was already mentioned in the theoretical frame-
work chapter and plays an important role in this research in that the research is
carried out at Centric and uses input from Centric to realize the research artifacts.
After focusing on Centric, the systematic way that is planned to be followed in
order to answer the research questions is put forward. Next, attention is devoted
to the data collection methods, data analysis techniques, validation methods and
evaluation methods involved in this research. Finally, the chapter concludes with
the research approach results that present how the proposed research approach was
executed.

3.1 Centric

Centric is a software product organization that is founded in the Netherlands and
employs more than 5000 employees. Centric offers various software solutions to
several markets. A number of examples of these software solutions include ERP
systems, Business Intelligence systems and CRM systems that are offered to lo-
cal governments, financial services and wholesale. Besides offering standard solu-
tions, Centric offers tailored solutions to better suit the customers’ needs. Moreover,
throughout the years Centric has taken over many organizations that now represent
business units of Centric that have their own ways of working and deliver their own
set of products. Each of these business units focuses on its own target group and
concentrates on the development of a part of the software solutions that Centric
provides, thereby adhering to a customer intimacy approach, which ensures that the
organization in terms of all its business units keeps close contact with its customers.
Because of this decentralized approach, Centric imposes very broad guidelines on
the business units (e.g. use Scrum as a software development method), but further
lets the business units have the freedom to form their own processes and culture and
experiment with new ideas.

Because of this freedom, the expectation is that the business units differ in DevOps
maturity. That is, some teams that work on a product that falls into the domain of
a certain business unit could have more processes automated than teams that work
on another product that falls into the domain of the same or another business unit,
to name an example. Therefore, Centric has the desire to gain a better insight into
the extent DevOps is adopted in the business units. To do so, Centric assembled a

14

DevOps competence model and set out this model to the business units, which can
then perform self assessments using the control points residing in the model. Yet,
since the Centric its DevOps competence model is mainly set up from a technical
point of view, Centric wants to enrich the current model with other insights that
relate to DevOps such as the cloud, cultural aspects and the increasing collaboration
between parties due to the use of shared components. Once the enriched model is
established, the model can be leveraged to help the organization mature in DevOps
form a broader perspective than solely from a technical perspective.

3.2 Research questions

For this research, a main research question (MRQ) and adjoining sub research ques-
tions (SRQs) are assembled. Note that the MRQ and SRQs have a generic form and
concentrate on software product organizations in general. This is done to ensure
that the outcomes of the research are sufficiently generic to be used by other SPOs
as well. The main research question reads:

MRQ: How can software product organizations become DevOps
mature?

Besides the main research question, the following SRQs are assembled to structure
the research and to aid in answering the main research question.

SRQ1: What are the DevOps drivers and capabilities for product
software organizations to implement DevOps?

SRQ2: What does a DevOps competence model incorporating
DevOps drivers and capabilities look like?

SRQ3: What does a DevOps maturity model based on the con-
tents of the DevOps competence model look like?

SRQ4: How can SPOs leverage the DevOps maturity model to
become DevOps mature?

Below, each of the SRQs is detailed on by explaining the approach that is to be
followed to provide an answer to the SRQ in question.

SRQ1: What are the DevOps drivers and capabilities for software product
organizations to implement DevOps?

The first SRQ is answered by scanning the literature to find DevOps drivers that
foster the adoption of DevOps and capabilities that aid in the adoption of DevOps.
Important to note here is that drivers are seen as motivations for adopting DevOps.
Further, based on the findings residing in the theoretical framework, an inference can
be made in that these drivers and capabilities will differ to a certain extent. The
expectation, for instance, is that drivers and capabilities relating to automation,

15

culture, process improvement and more will be found. However, the plan is not
only to scrutinize literature to detect drivers and capabilities, but also to conduct
interviews at several software product organizations to elicit drivers and capabilities
from a practical point of view. Collecting drivers and capabilities in this way ensures
that a solid base of drivers and capabilities comes into being that covers insights
from both literature and practice.

SRQ2: What does a DevOps competence model incorporating DevOps
drivers and capabilities look like?

Figure 3.1 shows that, after collecting the drivers and capabilities, an attempt is
made to create a DevOps competence model that covers a perspective/focus area
structure such as Centric its DevOps competence model and the SPM competence
model from Bekkers et al. (2010).

Delivery chain

Driver#1

Driver#2

Scrum

Internal DevOps competence model DevOps competence model

Focus area
#..n

Test
automation

Delivery chain

Development method

Culture of collaboration

Focus area
#..n

Focus area
#..n

Focus area
#..n

Focus area
#..n

Test
automation

Focus area
#..n

Focus area
#..n

Culture of
trust and
respect

Focus area
#..n

Focus area
#..n

Literature

Focus area
#..n

Focus area
#..n

Focus area
#..n

Perspective #..n
Focus area
#..n

Practi
ce #1

Practi
ce #2

Practi
ce
#..n
Practi
ce
#..n

Capabi
lity#1

Practic
e #2

Capabi
lity#..n

Capabi
lity#..n

Figure 3.1: Realization of the DevOps competence model

When zooming in more deeply into Figure 3.1, it becomes apparent that the DevOps
drivers and capabilities (and their abstractions to focus areas and perspectives) from
SRQ1, the internal DevOps competence model from Centric, existing literature on
competence models and other literature are used to shape the DevOps competence
model. The figure also shows that perspectives and their corresponding focus areas
might have to be generalized, in order for the perspective to be adoptable in the
DevOps competence model. An example hereof is the Scrum perspective, which
might be generalized. The reason for generalizing such a perspective lies in the
fact that not every SPO uses Scrum as a development method. Therefore, this
perspective could be generalized to a generic ”Development method” perspective
that incorporates focus areas relating to generic agile development activities that
are not specifically tailored to Scrum. Next to that, the figure shows that some
perspectives or focus areas from Centric its DevOps competence model might be
reused in the DevOps competence model, in case this is possible. An example of this
is the ”Delivery chain” perspective, which is concerned with test automation, among
others. Here, test automation is a focus area that already houses a broad range of
tests that could be of relevance to other SPOs as well. As a result, capabilities

16

from this focus area might form part of the DevOps competence model. However,
another part of the plan is to enrich the DevOps competence model by means of
newly detected drivers and capabilities, as figure 3.1 makes clear.

SRQ3: What does a DevOps maturity model based on the contents of
the DevOps competence model look like?

Figure 3.2 shows the process of realizing a maturity model for DevOps.

Development method

Delivery chain

Culture of collaboration

Focus area #1

Focus area #2

Focus area #..n

Capabilities ordered by
maturity level
Capabilities ordered by
maturity level
Capabilities ordered by
maturity level

DevOps maturity model

Test automation Capabilities ordered by
maturity level

Culture of trust and
respect

Capabilities ordered by
maturity level

Focus area #..n Capabilities ordered by
maturity level

Focus area #..n Capabilities ordered by
maturity level

Focus area #..n Capabilities ordered by
maturity level

Focus area #..n Capabilities ordered by
maturity level

Perspective #..n
Focus area
#..n

Practi
ce #1

Practi
ce #2

Practi
ce
#..n
Practi
ce
#..n

Capabi
lity#1

Practic
e #2

Capabi
lity#..n

Capabi
lity#..n

Assessment data

Interview data

Internal
documents

Literature

Figure 3.2: Realization of the DevOps maturity model

As stated in the theoretical framework and as shown in the figure, the contents from
the competence model can be transferred to the maturity model. The capabilities,
which are positioned in the maturity model, then represent a step by step guide on
how to mature in DevOps. Further, Figure 3.1 shows that input from earlier self
assessments with Centric its DevOps competence model, internal documents and
literature are used to make up the maturity model.

SRQ4: How can SPOs leverage the DevOps maturity model to become
DevOps mature?

After developing the DevOps maturity model, SRQ4 can be answered by conduct-
ing exploratory case studies at Centric where both the capabilities of the DevOps
competence model and maturity model are put to use with the aim to assess the
current DevOps maturity of the business unit teams that work on a certain prod-
uct. Assessing can be done by creating an assessment instrument on the basis of the
capabilities (Van Steenbergen, Bos, Brinkkemper, Van de Weerd, & Bekkers, 2013).
Having created this instrument, it can be set out to the business units of Centric in
order to obtain a filled in assessment for each of those. These filled in assessments
can then be transformed into maturity profiles, which depict the current state of
DevOps maturity and shows how to further mature in DevOps.

17

3.3 Methods and techniques

In the previous sections, the role of Centric in this research was outlined and, in
addition, the plan to be followed in order to answer the research questions was
explained. Now the focus is shifted to research rigor. Indeed, this section is devoted
to the overarching research method covering appropriate methods and techniques
utilized during the execution of the research.

The overarching research method followed during this research concerns design sci-
ence, and is defined as an attempt to create things that serve human purposes
(March & Smith, 1995). More concretely, the research method is used in the field
of Information Systems research to create so called IT artifacts. These IT arti-
facts could come in various types including constructs (vocabulary and symbols),
models (abstractions and representations), methods (process stages to be followed
to solve problems using IT) and instantiations (implementations of constructs and
models) (Oates, 2005). Reading the above, it can be derived that design science
aligns properly with this research, as two models are planned on being created that
both incorporate the drivers, perspectives, focus areas and capabilities.

In addition, a well known framework that corresponds to design science concerns
the Information Systems Research Framework proposed by Hevner, March, Park,
and Ram (2004). This framework is well known among IS researchers and has been
adopted at a large scale in IS research (Willcocks, Sauer, & Lacity, 2016). The
framework stresses that Information Systems research needs to be relevant and rig-
orous. Relevance, here, points to business relevance (i.e. the realized artifact must
tackle a business problem residing in a certain environment) whereas rigorousness
points to research rigorousness (i.e. the way the artifact is realized should be sci-
entifically sound). As a further matter of clarification, the framework allows for
iterative assessment and refinement of an artifact, which means that an artifact can
be constantly improved upon. From a more practical point of view, it becomes
apparent that the framework from Hevner et al. (2004) can be associated with this
research, as is made visual in Figure 3.3.

Figure 3.3 explicates that software product organizations are dealt with, where peo-
ple from different disciplines need to collaborate in an environment. Within this
environment several technologies are involved that are of relevance to IT operations,
developers and other engaging stakeholders in the DevOps movement. Here, devel-
opers are interested in developing software, while customers are interested in using
the developed software. Other stakeholders, however, have other interests when it
comes to software. Information security, for instance, is mainly interested in secur-
ing software, whereas product management has an interest in managing the software
that is provided to customers.

Also, as described in the theoretical framework chapter, problems residing in this
environment cause the environment to operate less efficiently. Consequently, a need

18

People
-Developers
-IT operations
-Other engaging
stakeholders (information
security, quality assurance,
product management,
customers etc.)

Organizations
- Software product
organizations

Technology
-IT infrastructure
-Software

Foundations
-Literature on DevOps
drivers and capabilities
-Literature on competence
models
-Literature on maturity
models
-Interview data on DevOps
drivers and capabilities
-Internal DevOps
competence model
-Assessment data
-Internal documents

Methods and
techniques
-Literature review
-Interviews
-Constant comparison
analysis
-Expert opinion

Develop/build
Artifacts:
-Drivers, capabilities,
focus areas and
perspectives
-DevOps competence
model
-DevOps maturity model

Justify/evaluate
-Exploratory case study

Need for DevOps Applicable
knowledge

Environment IS Research Knowledge Base

Additions to the knowledge baseApplication to the appropriate
environment

assess refine

Relevance Rigor

Figure 3.3: The IS research framework from Hevner et al. (2004) tailored to this
study

for adopting DevOps exists that can be met by developing appropriate artifacts.
Once these artifacts are assembled, they can be evaluated in practice by means of
an exploratory case study.

3.3.1 Knowledge base

Before being able to develop, validate and evaluate artifacts, a knowledge base is
to be created that is composed of interview and literature data on DevOps drivers
and capabilities, Centric its DevOps competence model, assessment data, internal
documents and literature on competence and maturity models. Besides, methods
are needed that allow for validating and evaluating the artifacts. Additionally, a
data analysis technique must be employed to analyze the qualitative data obtained
during the research.

3.3.1.1 Literature review

The research question section already made clear that most of the topics addressed in
the SRQs are investigated by performing a regular literature review, where a search
is conducted through several sources by making use of suitable search terms that
elicit helpful information, which aids in the creation of the proposed artifacts.

19

3.3.1.2 Interviews

Apart from using the literature review as a data collection vehicle, interviews are
planned to be conducted at various software product organizations to construct the
artifacts. Interviews can be perceived as “an interchange of views between two per-
sons conversing about a theme of mutual interest,” where the researcher aims to
“understand the world from the subjects’ point of view, to unfold meaning of peo-
ple’s experiences”(Kvale, 1996, p.1-2). Four types of interviews are acknowledged by
Kajornboon (2005) including structured interviews, semi-structured interviews, un-
structured and non-directive interviews, where structure refers to the way questions
are framed. More specifically, in a structured interview the same questions are asked
to all interviewees, whereas in a semi-structured interview, additional questions may
be asked and the order of questions or themes may be shuffled. In an unstructured
interview, no structure exists at all and questions are asked liberally resulting in
obtaining highly different data from each of the interviewees. Lastly, in a non direc-
tive interview, the interviewee leads the interview, which causes the interviewer to
follow the interviewee. Looking at the four types of interviews and applying these
to the context of this research, semi-structured interviews are the means that best
suit the research, because this type of interviews can be employed to support data
gathering on DevOps capabilities by using the DevOps drivers found in literature
as a question guide, while interviewees can also be asked openly to come up with
DevOps drivers and capabilities, so that a rich set of practical and scientific DevOps
drivers and capabilities is expected to emerge.

3.3.1.3 Constant comparison analysis

To come to DevOps drivers and capabilities, a technique termed constant com-
parison analysis, which is discussed by Onwuegbuzie, Leech, and Collins (2012), is
opted for. By utilizing this technique, the researcher identifies codes, after which
abstractions are made to categories and/or themes (Saldaña, 2015). When applying
this technique to this research, the drivers found in literature could form the codes,
which, after comparison, could be abstracted to an overarching driver that reflects
the codes at an abstract level. For example, if, from two interview sources, two
pieces of text are coded, namely ”create better alignment with quality assurance”
and ”create better alignment between shared components” then a corresponding
driver emerging from these codes could be ”agility and process alignment”. A sim-
ilar construction can be applied to the capabilities residing in interview data and
literature. Then, after comparison, these capabilities can be abstracted to focus
areas. In turn, focus areas that deal with similar aspects, are abstracted to perspec-
tives. Figure 3.4 demonstrates the codification process for both the drivers and the
capabilities.

20

Code#1 Code#3Code#2

From sources to drivers

Literature
source #2

Literature
source #1

DevOps
driver#1
(theme)

Interview
source #1

Code#1 Code#3Code#2

Literature
source #2

Literature
source #1

Perspective#1
(theme)

Interview
source #1

Focus
area #2

Focus
area #1

From sources to perspectives

DevOps
driver#1
(theme)

Figure 3.4: Constant comparison analysis

3.3.1.4 Expert opinion

The DevOps competence model, maturity model and underlying perspectives, focus
areas and capabilities should be validated to ensure credibility of the artifacts. This
is done by means of a validation method called expert opinion in which an artifact is
subjected to experts, “who imagine how such an artifact will interact with problem
contexts imagined by them and then predict what effects they think this would have.
If the predicted effects do not satisfy requirements, this is a reason to redesign the
artifact”(Wieringa, 2014, p.63).

3.3.2 Evaluation

After validating the artifacts, the artifacts can be evaluated in practice. For this to
happen, design science suggests contemplating artifacts in an exploratory setting.
In this research, the capabilities are evaluated by means of a case study from which
the outcomes can be plotted on the maturity model. Before conducting the case
study, a case study protocol is made up as advocated by Yin (2013), to assure plan
validity of the case study.

21

3.4 Results

The following sections outline the results pertained to the methods used to collect
data, to validate artifacts and to evaluate the artifacts. Indeed, the previous sec-
tions described the methods and techniques planned to be used, whilst this chapter
reflects on the results that emerged from using these methods and techniques. To
present the aforementioned in a structured way, a process deliverable diagram is
first presented. Thereafter, the data collection method results are outlined. Next,
the results regarding the methods for validating the artifacts are outlined. Finally,
the evaluation method results that came with the case study are explained.

3.4.1 Process Deliverable Diagram

In figure 4.1 a process deliverable diagram is depicted. This process deliverable
diagram is an invention of Van de Weerd and Brinkkemper (2008) and holds activ-
ities on the left hand side and deliverables those activities yield on the right hand
side. In case of Figure 3.5 the diagram shows how this research was conducted.
As a result, the diagram depicts a clear overview of the activities that were carried
out sequentially and in parallel and the deliverables that were realized along the
way.

22

Prepare data collection

Student

Collect data

Student

Construct DevOps competence model

Student

Conduct first validation round

Student, workshop experts

Evaluate artifacts

Construct case study protocol
Student

Fill in self assessments
Assessees

Create focus areas

Create perspectives

Review literature for drivers

Conduct
interviews

Review materials
for capabilities

Construct
interview protocol

Create maturity profile
Student

Validate DevOps
competence model in a

workshop and in follow up
validation sessions

Construct self assessment
Student

DRIVER

CAPABILITY

FOCUS AREA

PERSPECTIVE

DEVOPS

COMPETENCE

MODEL

VALIDATED FOCUS

AREA

VALIDATED

CAPABILITY

VALIDATED FIRST

VALIDATION ROUND

CAPABILITY

Construct maturity model
student

VALIDATED DEVOPS

COMPETENCE MODEL

MATURITY MODEL

INTERVIEW

PROTOCOL

Introduction

General questions

DevOps questions

Closure

CASE STUDY

PROTOCOL

Background

Data collection

Analysis

Plan validi ty

Validate perspectives,
focus areas and

capabilities in a workshop
and in follow up validation

sessions

Conduct second validation round

SELF ASSESSMENT

FILLED IN SELF

ASSESSMENT

MATURITY PROFILE

Construct
informed consent

INFORMED CONSENT

Validate first validation
round focus areas and

capabilities
Student, maturity experts, interviewees

Validate maturity model
Student, maturity experts

VALIDATED MATURITY

MODEL

VALIDATED FIRST

ROUND FOCUS AREA

1

1..*

1

1

is an improved
vers ion of

1..*

1

1

1..*

1

1..*

1

1..*

1 1..*

1

1

1

1

is an improved
vers ion of

1

1..*

1

1..*

1..*

forms the bas is
for questions in

1..*

1

1
leads to

1

1

leads to

1

1..*

forms the
basis for

1..*

1..* forms input
to

VALIDATED

PERSPECTIVE

1..*

1..*

1..*

1..*

1..*

1..*

1

is an improved
vers ion of

1..*

Figure 3.5: A Process Deliverable Diagram of the conducted research
23

3.4.2 Data collection method results

As said in the methods section, two data collection methods were planned to be used,
as a literature review and semi-structured interviews were conducted to collect data
on DevOps drivers and practices. This subsection outlines the way these two data
collection methods were put to practice by first addressing the setup of the literature
review and, thereafter, the setup of the semi-structured interviews.

3.4.2.1 Literature review

A literature review was done to collect DevOps drivers and practices. The literature
review was initiated by focusing on DevOps drivers to obtain input for the interview
protocol. After all, the interview protocol relied on input from literature since the
interview questions were shaped by means of literature. Then,after obtaining these
drivers, the focus was shifted to the gathering of DevOps capabilities.

In the quest of obtaining drivers and capabilities, various databases were consulted to
broaden the search scope. Also, several search terms were used to elicit more search
results. In concrete terms, databases from “Google Scholar”, “Google”, “Science
Direct” and “Springer” were leveraged during the search to elicit literature in which
the drivers and capabilities resided. In order to find drivers, the following search
terms were used:

� DevOps
� DevOps drivers
� DevOps motivation
� Need for DevOps
� Why DevOps?
� DevOps objectives

As for the search terms used to detect DevOps capabilities, “DevOps practices”,
“DevOps patterns”, “DevOps principles” were used as search terms in the first
attempt to find DevOps capabilities, since literature showed that DevOps capabil-
ities were known by these titles. However the aforementioned search terms used
to obtain the capabilities, were rather general. As a result, the search terms only
yielded general results and showed that DevOps was mainly associated with lean,
continuous improvement, automation, quality, culture and collaboration and align-
ment. Therefore, follow-up search terms were used to collect practices, which were
as follows:

� DevOps lean practices OR patterns OR principles
� DevOps continuous improvement practices OR patterns OR principles
� DevOps automation practices OR patterns OR principles
� DevOps quality practices OR patterns OR principles

24

� DevOps culture practices OR patterns OR principles
� DevOps collaboration practices OR patterns OR principles
� DevOps alignment practices OR patterns OR pincipes

3.4.2.2 Interviews

Apart from the literature review, semi-structured interviews were held at three dif-
ferent organizations, namely Centric, ICTU and Microsoft. During these interviews,
an interview protocol was adhered to and participants were given an informed con-
sent before the execution of the interview in order to inform the participants about
the research goals and research ethics. Both of the aforementioned documents can
be consulted in Appendix A. Important to mention here is that a handout of the
SPM competence model from Bekkers et al. (2010) was used during the interviews
in order to support the questions related to the third driver mentioned in the pro-
tocol, namely “Be more agile and have processes aligned”, later on called ”agility
and process alignment”. For the interview with a product owner, however, an ex-
ception was made and the decision was made not to follow the protocol. During
this interview the handout of the SPM competence model was solely used, as this
interview purely aimed at eliciting data on how product management was perceived
in relation to DevOps. Further, two interviews involved two persons. One with two
technical architects and another one with a software development manager and a
software architect. Table 3.1 elicits more information about the interviewees. As
can be seen a total of fourteen interviews were conducted at three organizations
with people from divergent backgrounds to obtain views on DevOps from different
perspectives. Moreover, when looked at Appendix A, the interviewees were asked
to come up with DevOps practices instead of DevOps capabilities, since the word
practice is also used in literature in the context of DevOps.

Table 3.1: Interviewees

Name Organization Function Experience
in current

func-
tion(years)

Experience
working for

current
organization

(years)
IntervieweeA Centric Software de-

velopment
manager

7 7

IntervieweeB Centric Software de-
velopment
manager

25 30

IntervieweeC Centric Software engi-
neer

5 22

25

IntervieweeD,
intervieweeE

Centric Software de-
velopment
manager,
software
architect

3,10 3,25

IntervieweeF Centric Project man-
ager

5 5

IntervieweeG Centric Unit manager
IT solutions

6 12

IntervieweeH Centric Team leader
support and
delivery

2.5 6

IntervieweeI Centric Microsoft
Azure consul-
tant

0.83 0.83

IntervieweeJ,
interviewee K

Centric Junior techni-
cal architect,
Senior techni-
cal architect

0.125, 1.5 7,20

IntervieweeL Centric Product
owner

1.5 4.5

IntervieweeM Centric Enterprise in-
novator

3 16

IntervieweeN Centric Executive 1.5 15
IntervieweeO ICTU DevOps engi-

neer
0.75 1.25

IntervieweeP Microsoft Developer
technical
specialist

10 10

Having conducted the interviews, the most important parts of the interviews, cov-
ering drivers and capabilities, were transcribed and subsequently summarized. As
a result, a digestible set of DevOps drivers and capabilities emerged for each in-
terviewee. Next, these sets were sent to the interviewees for validation. In total,
seven interviewees validated their set of drivers and capabilities of which two vali-
dations occurred through a follow-up interview. One of these follow-up interviews
also yielded extra input that was of use to this research (see iv-10 in Appendix B).
Moreover, in some cases the validation caused the drivers and capabilities to be
modified in order for the drivers and capabilities to be in line with the thoughts
of the interviewee. Further, a reminder email was also sent to the non-responders,
yielding one extra response.

26

3.4.3 Validation method results

The DevOps competence model, the maturity model and the perspectives, focus
areas and capabilities were validated by means of expert opinions. Moreover The
DevOps competence model was validated in a first validation round, while the capa-
bilities, focus areas and perspectives were validated in a first and second validation
round. The maturity model, however, was only validated in a second validation
round. The sections below further detail on the validation of the artifacts con-
structed during this research.

3.4.3.1 First validation round

A DevOps competence model was made by means of literature and on the basis of
the detected drivers and capabilities, which were abstracted to focus areas, which
in turn were abstracted to perspectives. This model and its contents were validated
by experts in the form of a workshop to gain credibility. In the workshop session
a poster, covering the DevOps competence model and other posters covering per-
spectives, focus areas and capabilities, were discussed. In addition, the participants
were provided with post-its so that feedback could be written down on these and
subsequently could be pasted on the posters.

Moreover, the structure adhered to during the workshop session was as follows.
The session started off by explaining the DevOps competence model, whereafter the
DevOps competence model itself was validated. Indeed, while validating the DevOps
competence model, the perspectives, focus areas and other elements making up the
model were validated by asking the following questions:

� [Understandability]Do you think the structure of the model is understandable?
(i.e. are the focus areas positioned logically and do the connections between
the focus areas make sense)

� [Stakeholder correctness]Do you think the stakeholders shown in the model
are correct?

To validate the contents of the model from a more detailed point of view, focus areas
and capabilities were explained to the experts, whereafter the following questions
were posed:

� [Understandability]Do you think the focus area and its capabilities are under-
standable?

� [Relevance]Do you think the focus area and its capabilities are relevant for
DevOps?

� [Completeness]Do you think the the focus area and its capabilities are com-
plete? If not, what should be done to make them more complete?

� [Maturity]Do you think the maturity order in which the capabilities should

27

be implemented is correct? (capabilities should be achieved in the order pre-
sented)

Observing the criteria above, the words in square brackets represent the validation
criteria, which were partly inspired by Kabaale, Amulen, and Kituyi (2014), where
understandability and completeness are used as validation criteria, albeit in a very
different context, where a requirements engineering process is validated. However,
in this research, understandability was regarded as the understandability of the
capabilities. Thus, the participants were asked if the focus areas and capabilities
were sufficiently understandable. Further, it could be the case that the description
of the capabilities themselves were found to be incomplete or that extra practices
were needed to make a focus area more complete. For this reason, completeness was
adopted as a validation criterion.

The other criteria, namely relevance, maturity and stakeholder correctness were not
inspired by literature, but were found relevant to be asked to gain an early un-
derstanding of the relevanceness of the focus areas and capabilities in regards to
DevOps, as there could be focus areas and/or capabilities residing in the model
that were deemed not relevant for DevOps. Further, maturity was important to be
considered, since one of the aims of the research was to make a maturity model on
the basis of the DevOps competence model its contents (i.e. its perspectives, focus
areas and capabilities). It was therefore found important to check whether the ma-
turity order of the capabilities was considered proper at an early stage. Finally and
purely looking at the DevOps competence model, stakeholder correctness was also
taken into account as a criterion, since several stakeholders were detected during the
interviews and processed in the model. However, in order to validate the correct-
ness of the stakeholders engaged in the DevOps movement, a validation criterion for
these was also needed. After conducting the workshop session, follow-up validation
sessions followed with two of the experts to validate the processed input gained from
the workshop sessions and gain new input.

Workshop experts

The validation of the DevOps competence model and its contents was conducted
with seven participants from Centric of which one could not be present at the work-
shop and therefore handed in validation input through e-mail. Furthermore, one of
the participants was already interviewed during the data collection phase. To pro-
vide context around the participants and their relation to DevOps, the participants
are presented in Table 3.2 whereafter a short motivation for each of the participants
follows. Note that pseudonymised names are used to ensure confidentiality and that
the participants were no DevOps experts, but were experienced in sub fields falling
into the DevOps domain.

28

Table 3.2: Workshop experts

Name Organization Function Experience
in current

func-
tion(years)

Experience
working for

current
organization

(years)
Workshop
ExpertA

Centric Manager 10 38

Workshop
ExpertB

Centric Consultant
and PhD
candidate

6 6

Workshop
ExpertC

Centric Enterprise in-
novator

3 16

Workshop
ExpertD

Centric Manager 8 31

Workshop
ExpertE

Centric Manager 3 10

Workshop
ExpertF

Centric Software
architect

4 18

Workshop
ExpertG

Centric Manager 11 16

WorkshopExpertA and B
WorkshopExpertA is a manager at Centric. He was engaged in making Centric its
DevOps competence model on the basis of experience gained throughout the years.
Also, WorkshopExpertA carried out assessments with the model throughout Centric
in order to assess the DevOps maturity of Centric. Next to WorkshopExpertA,
WorkshopExpertB, who is a PhD candidate and also works at Centric, was engaged
in developing Centric its DevOps competence model and in assessing the DevOps
maturity of the Centric organization. While developing Centric its DevOps model
and carrying out assessments, both WorkshopExpertA and B have gained a lot of
expertise in the DevOps field. As a result, both of these experts were able to validate
the model from a more practical, in-depth, perspective.

WorkshopExpertC
WorkshopExpertC is an enterprise innovator and works at Centric. Moreover, Work-
shopExpertC carries out visions concerning innovation roadmaps in the field of IT
to customers, which in turn can implement these together with Centric. One of
the phenomenons that is currently interwoven with these visions is DevOps. Thus,
WorkshopExpertC also advises customers on how to implement DevOps in their
organization from an overall (strategic) perspective. The fact that he advises cus-
tomers on how to implement DevOps makes that WorkshopExpertC has a solid
base of expertise in the field of DevOps and was therefore capable of validating the
DevOps competence model from an overall perspective.

29

WorkshopExpertD
WorkshopExpertD, manager at Centric, has broad expertise in cloud computing.
As became clear earlier, cloud computing is interrelated with DevOps, as SPOs
are shifting to a cloud based way of working. Therefore WorkshopExpertD formed
an excellent participant to validate the DevOps competence model from a cloud
perspective.

WorkshopExpertE
WorkshopExpertE is a manager at Centric and his specialization is in the area of
shared components. As with the cloud, shared components play a role in the DevOps
field, as shared components are used in several products and must thus be aligned
with release calendars of these products to overcome misalignment. For this reason,
WorkshopExpertE was an ideal participant when it came to validating the shared
components part of the DevOps competence model.

WorkshopExpertF
WorkshopExpertF is a software architect at Centric and is specialized in imple-
menting Microsoft’s release management, which is a tool that could be used for
automating deployments and testing across multiple environments. Having exper-
tise in the software architecture field and in automation, WorkshopExpertF formed
an excellent participant to validate the more technical aspects of the DevOps model
that concerned automation.

WorkshopExpertG
WorkshopExpertG is a manager at Centric. WorkshopExpertG is engaged in re-
searching how organizations and technology interoperate. DevOps also covers the
bridge between organization and technology in that collaboration among stakehold-
ers forms a large part of DevOps. Therefore, WorkshopExpertG formed an excellent
candidate to validate the DevOps competence model from this perspective.

3.4.3.2 Second validation round

During the second validation round, the focus areas and capabilities including the
input from the first validation round were validated by a number of the interviewees
and experts. As for the sessions with the interviewees, the same validation criteria
was used as in the workshop session, while in the sessions with the experts no
validation criteria was used to validate the focus areas and capabilities, since the
focus of these sessions was on the validation of the maturity model, as becomes clear
later on. Hence, the only questions asked to the experts with regard to capabilities
was whether the capabilities were correct and ordered properly. Further, since the
second validation round consisted of individual validation sessions with interviewees
and experts that yielded improvements, processing criteria was needed to process
the second validation round input in the focus areas and capabilities. The processing
criteria was as follows:

30

� If multiple interviewees and/or experts came up with small textual modifica-
tions to a capability: small textual modifications were processed directly.

� If multiple interviewees and/or experts agreed on similar reasoning to add,
change or delete a capability: a capability was added, changed or deleted.

� If an expert or interviewee proposed a new or a more impacting change to
a capability or focus area that was recognized in literature: the proposed
capability was added or change was made.

� If an expert proposed to add or reorder a capability that was in line with his
own field of expertise: the proposed capability was added or reordered.

When further perceiving the validation of the positioning of the capabilities in the
maturity model, four expert opinion sessions were conducted with experts. These
same experts were also involved in validating the focus areas and capabilities. Val-
idating the focus areas and capabilities and the correctness of the positions of the
capabilities in the maturity model, however, occurred in the very same session with
each of the experts. These sessions had the following form. First, a general introduc-
tion was given of the DevOps competence model. Thereafter, the functioning of the
maturity model was explained and also the rationale of the current positioning was
made clear to the expert by using a handout of the maturity model. After doing so,
each of the focus areas with its corresponding capabilities were explained with the
aid of handouts on which the focus areas and capabilities, after their first validation
round, were depicted. Next, after explaining a focus area with its corresponding
capabilities, the expert was asked whether the capabilities were correct and ordered
properly. After asking this question and obtaining improvement input, the concen-
tration was shifted from the focus area with its capabilities to the maturity model,
after which the following questions were asked.

� [Correctness]Do you think the positioning of the capabilities in this focus area
are correct?

� [Generalizability]Do you think the positioning is generally applicable to other
situations?

As became clear earlier, the expert opinion sessions were also conducted individually
with the experts. Consequently, processing criteria in order to process validation
input in the maturity model was needed as well. This processing criteria was as
follows:

� If all experts were able to propose a new position or agreed with the current
position of a capability: an average was taken of all positions after which the
rounded average formed the new position.

� If only one expert proposed a concrete position for a certain capability for
which other experts could only suggest a level range in which the concrete po-
sition proposal fell: the concrete proposed position of the expert was followed
and thus formed the new position.

� If one expert proposed a new capability that was recognized in literature: the
position for this capability proposed by the expert was assumed to be correct,

31

followed, and thus formed the new position.
� If proposals of new positions and agreements on current positions of multiple

capabilities in a focus area equaled after averaging and rounding: expertise of
an expert was relied on to determine the position of the capabilities that had
an equal position after averaging and rounding.

Important to note is that the second validation round occurred in parallel with the
interviewees and experts, meaning that both the focus areas and their belonging
capabilities and the positioning of the capabilities inside the maturity model were
validated in parallel in a time span of one month.

Interviewees

The focus areas and capabilities after the first validation round were aimed to be
validated by all interviewees, but were eventually validated by seven interviewees
against the same criteria that were used during the workshop. In concrete terms,
the validation sessions were done with one of the technical architects, two software
development managers, the unit manager, the software engineer, the enterprise in-
novator and the Microsoft Azure consultant. The input from these interviewees was
used to further enhance the focus areas and capabilities. Further noteworthy to
mention, here, is the fact that four of these interviewees could also be considered ex-
perts to a certain extent as these were already working in a DevOps environment or
were used to working in a DevOps environment. Their expertise was also reflected
in the fact that most of the gained input came from these interviewees. To give
context around these interviewees, a short description for each of the interviewees
is given below.

IntervieweeG
One of the inteviewees is a unit manager. From the interview, it became clear that
the unit manager possessed broad experience with the implementation of DevOps
in his unit. Moreover, the unit manager was involved in implementing continuous
delivery and is still involved in optimizing the DevOps movement by stimulating
interdisciplinary people to collaborate and further optimizing the DevOps from a
technical point of view.

IntervieweeM
For a description, please consult WorkshopExpertC, as this concerns the same per-
son.

IntervieweeI
The Microsoft Azure Consultant was an entrepreneur and implemented DevOps in
his own organization, which provided crowd funding services on a cloud platform.
Further, the services, his organization provided, were developed and maintained by
cross functional teams that included both developers and operations people, which
denotes that a DevOps way of working was adhered to in his organization.

IntervieweeK

32

The technical architect was in the midst of shifting to a DevOps way of working at
the time he participated in this study. Together with the transition to a DevOps
way of working, the infrastructure also had to be tailored to a DevOps-like situation.
Hence, the technical architect could be said to be discerned as a novice expert when
it came to implementing DevOps from a technical point of view.

Maturity model experts

The maturity model was validated with four experts of which one expert worked at
Centric. Yet, the three other experts came from organizations other than Centric
and two of these were interviewed before. The participants, with whom the vali-
dation was performed, are presented in Table 3.3 below and are accompanied by a
short description. Again, confidentiality is taken into consideration. Noteworthy to
mention is the fact that MaturityExpertB concerns the same person as the DevOps
engineer from the interviews, who was seconded to ICTU on behalf of KPMG for a
certain period.

Table 3.3: Maturity experts

Name Organization Function Experience
in current

func-
tion(years)

Experience
working for

current
organization

(years)
Maturity
ExpertA

ZenSoftware Entrepreneur 2 2

Maturity
ExpertB

KPMG Consultant 3 3

Maturity
ExpertC

Microsoft Developer
technical
specialist

10 10

Maturity
ExpertD

Centric Consultant 17 17

MaturityExpertA
MaturityExpertA has a background in the computer science field and is an en-
trepreneur. Further, MaturityExpertA is active in the software industry and through-
out the years, he developed various solutions for large enterprises and governmental
organizations. Further, his main focus is on agile and lean software development and
continuous delivery. To this end, the services MaturityExpertA delivers are mainly
built up around an agile and DevOps way of thinking. Together with providing these
services, MaturityExpertA encourages organizations to empower teams, adopt a cul-
ture of learning and improve continuously. From this description, it becomes clear
that MaturityExpertA formed a good match for validating the maturity model, as
he has broad experience in the field of DevOps.

33

MaturityExpertB
MaturityExpertB is a consultant and has a background in informatics. MaturityEx-
pertB has a lot of practical experience when it comes to automating development-
and operations processes, as he has operated in several DevOps teams and ad-
vised these teams on how to make use of advanced tools to further automate their
development-and operations processes. Because of his broad practical experience
with DevOps, MaturityExpertB represented a good candidate for validating the
maturity model.

MaturityExpertC
MaturityExpertC is a Developer Technical Specialist, whose main interest is in ap-
plication lifecycle management, continuous delivery and DevOps. He advises or-
ganizations, ranging from startups to large independent software vendors, on how
to adopt DevOps. Besides, he also gives public talks on DevOps, which stresses
the knowledge he has on this subject. MaturityExpertC thus has broad knowledge
of the subject at hand and was therefore more than able to validate the maturity
model.

MaturityExpertD
MaturityExpertD is a consultant and has a background in informatics. Maturity-
ExpertD has fulfilled various functions relating to DevOps throughout the years.
He has, for instance, been active as a continuous delivery consultant at banks and
governmental institutions, where he gained a lot of expertise in the continuous de-
livery field. As MaturityExpertB, MaturityExpertD has gained a lot of hands-on
experience and has an understanding of what it takes to transfer an organization to
DevOps, which made him an excellent person to validate the maturity model.

3.4.4 Evaluation method results

The case study to evaluate the capabilities and maturity model in practice was exe-
cuted at Centric by setting out nineteen self assessments to nineteen assessees from
different business units that were responsible for the creation of a certain product.
Initially, there was doubt on whether the data collection phase of the case study
should be approached with personal interviews or with self assessments. The ad-
vantage of conducting interviews is that they allow for explaining the capabilities
more extensively to the assessee, which yields a high chance of obtaining desirable
answers. The downside of conducting interviews compared to executing self as-
sessments, however, entails that fewer assessees could be reached in the same time
frame. After considering the aforementioned, the choice was made to execute self
assessments for the reason that a higher amount of assessees could be reached via
this approach. This gave rise to eight filled in assessments of which seven were found
to be useful for this research and were subsequently used to make up maturity pro-
files. Further and as said previously, the execution of the case study was led by a
case study protocol that was set up beforehand. This cases study protocol can be

34

found in Appendix D and is based on Durham (2009), which in turn is derived from
Yin (2003). As can be seen in Appendix D a set of forty five questions was used
to obtain data in order for maturity profiles to be made. Most of these questions
that were formed around the capabilities were primarily aimed at the collaboration
between development and operations, thereby leaving out the collaboration between
other interdisciplinary stakeholders, who are also involved in the DevOps movement.
For instance, as further becomes clear in the results chapter, the communication fo-
cus area incorporates the indirect communication capability, which stresses indirect
communication between ”interdisciplinary professionals, among which are dev and
ops”. However, the question formed around this capability was made more concrete
for the assessees and thus only contained the essence, namely indirect communica-
tion between dev and ops. This choice was deliberately made to make the questions
more to the point and yield a higher response rate. Also, in some cases, one ques-
tion incorporated multiple capabilities to minimize the number of questions and a
number of capabilities were not adopted in the questions at all, since it was thought
that these capabilities were by definition not present in the business units. The
capabilities for which this was the case are accompanied by an asterisk in the focus
areas and capabilities results section, where all final capabilities that were used in
the case study are presented. Finally, case study results were fed back to the as-
sessees in the form of a maturity profile in conjunction with an advise on the next
steps to be taken in order to grow more mature.

35

4 The journey towards the DevOps ma-
turity model

This chapter presents the results obtained during the journey towards the DevOps
maturity model. To this end, the detected DevOps drivers are first presented. Sec-
ond, the DevOps competence model is detailed on. Third, capabilities are outlined.
Fourth, the maturity model is discussed. Fifth and last, the case study results are
presented. One might notice that the presentation of the results is not in line with
the order of the research questions. This choice is made on purpose, since first
presenting the drivers and the DevOps competence model leads to a global under-
standing of the motivation to adopt DevOps, the focus areas of DevOps and how
these are interrelated. After presenting the DevOps competence model, the DevOps
competence model can then serve as a coat rack for presenting the capabilities,
which are more in-depth in nature and could be better understood after observing a
general overview of DevOps in the context of this study, which is presented by the
DevOps competence model. Further, while presenting the results, codes are used
to make traceable from which interviews and validation sessions certain evidence
originates. The coding scheme covering these codes can be consulted in Appendix
B.

4.1 Drivers

The first driver constructed from interview data and literature is create A culture
of collaboration. DevOps aims to bridge the gap between stakeholders by break-
ing so-called “silos”, since the problem with the traditional way of working is that
work is carried out in silos, which ends up in throwing software over the wall from
stakeholder to stakeholder (Sydor, 2014). DevOps attempts to diminish these silos
and promotes better communication, collaboration and integration among the par-
ties engaged, with a special focus on collaboration, communication and knowledge
sharing between development and operations as it is a known fact that development
is often far removed from the production environment and is often ignorant towards
how the developed software performs when it runs in production (Babar, 2015b;
Shahin et al., 2014; Erder & Pureur, 2015; Hussaini, 2015; Dijkstra, 2013; Swartout,
2014). The same was recognized in practice as interview data (iv-8; iv-12; iv-13;
iv-15; iv-9; iv-1) also clarified that DevOps was seen as a driver for creating a culture
of collaboration. A quote of the interviewee that shows the need for a culture of
collaboration is shown below.

36

“... The current situation ... is that everyone is on his own island, meaning that
when an application does not work, operations puts in place another process without
examining why the application does not function. As a result, development does not
know what process was put in place. This form of general quality can be improved
by better collaboration [between development and operations] (iv-8).”

The second driver emerging from interview data and literature is Agility and pro-
cess alignment between stakeholders in the DevOps movement (Gruver & Mouser,
2015; Dijkstra, 2013). DevOps strives to bring these stakeholders under the same
agile process with the result that better process alignment is achieved (Economou,
Hoblitt, & Norris, 2014). Aside from alignment between internal stakeholders in the
DevOps movement, DevOps attempts to create better alignment with the customer
(Patwardhan, 2014). An example of this is the project scope, which DevOps aims
not to be cut late in the process if it becomes clear, for instance, that certain fea-
tures do not fit the project scope anymore or last minute changes must be made
(Swartout, 2014). In order to prevent such situations as much as possible, DevOps
advocates close customer contact by including customer feedback as early as possible
(Wettinger, Breitenbücher, & Leymann, 2014a; Claps, Svensson, & Aurum, 2015;
Babar, 2015a). Interestingly, the drivers detected in interview data (iv-8; iv-3; iv-6;
iv-5) corresponded to the above. Moreover, alignment with other dependent internal
parties, Q/A and operations was discerned (iv-3; iv-5; iv-6) and DevOps was also
seen as a trigger for becoming more flexible towards the customer (iv-8):

“... We see and know that agile [software development] works. . . the motivation
to implement this [an agile way of working] in operations together with seeing that
ITIL does not match with scrum are the drivers for DevOps (iv-5).”

“... When we began working remote with [development] teams, we noticed that de-
velopers continuously developed software, with no working build as a result... Also,
the integration with quality assurance was not optimal at that time and so we lost
another 4 days to getting the software to work in order for it to be deployable (iv-
6).”

However, to solicitate fast feedback, it is required to release software at a fast pace.
The third driver, therefore, concerns Automation, as DevOps drives the automa-
tion of certain tasks in the DevOps movement (e.g. building, testing and deploy-
ment) (Erder & Pureur, 2015; Claps et al., 2015; Babar, 2015a; Grajek & Reinitz,
2015; Sherwood, 2014; Hermanns & Steffens, 2015). The reason for automating
tasks lies in the fact that performing tasks manually yields a higher chance of er-
rors being made and a higher chance of releasing low quality software at a slow
pace (Wettinger, 2012). The fact that manual processes are error prone and require
automation was also recognized by one of the interviewees (iv-6):

“... Also, for deploying software we walked through a manual of 14 pages, which de-
scribed lots of manual steps that had to be performed to deploy software. I think that
no installation or update went the same [when following the manual] (iv-6).”

37

Moving further, the fourth driver concerns Higher quality, which originated from
practice and was mentioned by three interviewees (iv-7; iv-4; iv-3). One of the
interviewees made clear that DevOps was seen as a driver to create a higher quality
product:

“We started with DevOps, as we wanted to yield a higher quality product. And we we
wanted to do that [yielding a higher quality product] more frequently (iv-7).”

Also when observing the literature after conducting the interviews, it became visi-
ble that higher quality as a driver was also recognized by literature, as low quality
is often caused by executing processes manually, which thus require automation to
gain a more consistent way of working, which enhances quality. This was also recog-
nized by Hüttermann (2012), Riungu-Kalliosaari et al., 2016 and Dyck et al. (2015).
Additionally, it is recognized in literature that DevOps contributes to process and
product quality. DevOps aims to enhance process quality as the movement strives to
detect errors early in the process of realizing the product (Angara, Prasad, & Sridevi,
2017), while DevOps also aims to release functionality of high quality that carries
the least bugs possible and complies with customers’ needs (Chen, 2015).

Next, the fifth driver concerns the Development and deployment of cloud
based applications (Patwardhan, 2014). As said in the introduction, traditional
product software organizations often develop on-premises software. However, these
organizations are looking for ways to migrate to Software as a Service (SaaS), where
the software provider runs and maintains the hardware and software and customers
can make use of the software through the internet (Choudhary, 2007). This software
as a service phenomenon therefore often encompasses a web based delivery model
(Sun, Zhang, Guo, Sun, & Su, 2008) that allows for faster deployment. However,
with such a model often comes a cloud native architecture, which is known as a
micro services architecture (Bass et al., 2015). This, in turn, enables a different
way of deployment, as recognized by interview data (iv-3), where it was stated that
services can be deployed independently.

The disadvantage is that we are not web based, which means that every two weeks,
we need to deploy all twenty six programs at once. If we were web based we could
deploy independent components during a sprint [a sprint of two weeks]. Then you
can maintain much smaller codebases during a sprint.”

However, these micro services were also mentioned by other interview data (iv-8) in
relation to the need for different responsibilities in order to deploy these services.
Hence, a developer needs to have an understanding of operations tasks, which is yet
another trigger for adopting DevOps:

“You cannot do [adopt] cloud without DevOps. For instance, people are needed that
can switch from task to task quickly. To name an example, if a developer wants
to deploy a new microservice and thinks that this service must run on a dedicated
server then the developer must be able to roll out this server ... So, for this we

38

need T-shaped professionals that not only have knowledge of development, but also
have knowledge of operations. Thus, the cloud asks for responsibility that a regular
developer or operations person does not have (iv-8).”

The sixth and last driver detected is Continuous improvement, which aims to
continuously improve quality and the product by identifying performance bottle-
necks (Economou et al., 2014) and anticipating on problems such as incidents coming
from customers, which also appeared in interview data (iv-15).

“We must actively monitor for issues before the customer knows it [that there is an
issue] and we must be able to respond to it [the issue] quickly (iv-15).”

Further, in literature it was found that DevOps, aside from improving quality and
the product, also takes account of enhancing the DevOps movement by integrating
monitoring and measurement in the process in order to continuously release faster
(Erder & Pureur, 2015; Sydor, 2014; Babar, 2015a). Besides, DevOps aims to
continuously improve the collaboration between multidisciplinary stakeholders as
well (Davis & Daniels, 2016).

To give a clear overview of the detected drivers that emerged from literature and
interview data, Table 4.1 summarizes the drivers in the same order as they were
outlined above.

Table 4.1: Drivers

Driver
A culture of collaboration
Agility and process alignment
Automation
Higher quality
Development and deployment of cloud based applications
Continuous improvement

4.2 DevOps competence model

On the basis of the perspectives and focus areas presented more deeply in the next
section and inherently also the drivers, a DevOps competence model was constructed
that is shown in Figure 4.1. An earlier version that was validated during the first
validation round is adopted in Figure 4.2 and is referred to as the initial version of
the DevOps competence model throughout this section. The improved version of
the initial version of the model adopted in Figure 4.1 also includes the processed
input from the second validation round, which concerned small changes to focus
areas.

39

Product, Process and Quality

Culture and
Collaboration

Development Test Acceptance Production

Internal
Stakeholders

External
Stakeholders

Foundation

Release for production

Release heartbeat

Test automation

Incident handling

Deployment automation

(Product)
management

Development

Test/QA

Operations

Architecture

Configuration management

Customers

Third parties

Dev quality
improve-

ment

Build
automation

Branch and
merge

Communi-
cation

Knowledge
sharing

Trust and
respect

Team
organization

Release
alignment

Architecture alignment

Infrastructure

Perspec
tive

Focus area
Relation

Stakeholder

Figure 4.1: The DevOps competence model after validation

4.2.1 Perspectives

4.2.1.1 Culture and collaboration

From Figure 4.1, it can be inferred that the DevOps competence model represents
a software house, which is an organization involved in product development (Derni-
ame, Kaba, & Wastell, 2006). When observing the roof of the house, the culture and
collaboration perspective can be discerned. This perspective is positioned at the top,
as the perspective reflects the most prominent perspective, because the organization
itself should be in place to perform work. Moreover, to perform work, interdisci-
plinary people should at least collaborate in that they should communicate. Ideally
they also share knowledge, have trust and respect for one another, work in teams,
and there should be some form of alignment with internal and external dependencies
in order to deploy software on the planned time.

40

4.2.1.2 Product, Process and Quality

Below the culture and collaboration perspective, the product, process and quality
perspective is depicted, which attempts to visualize the process of releasing a prod-
uct and the feedback loops that reside in this process. Moreover, when viewing
the product, process and quality perspective, it can be discerned that several focus
areas cross four environments that together represent the DTAP-street, which forms
an acronym for development, testing, acceptance and production and represent the
environments on which development, testing and running software in production
occurs. The DTAP street is a well known industry practice used in many SPOs
(Heitlager, Jansen, Helms, & Brinkkemper, 2006), which contributes to making the
DevOps competence model understandable and recognizable to practitioners. Note-
worthy, however, is the fact the environments presented here are not exhaustive,
meaning that an organization could have other environments in place as well. For
instance, in one of the interview cases (iv-6) a smoke environment, used for auto-
mated testing, was present as well.

When further scrutinizing the environments, a green arrow can be perceived that
explicitly denotes a feedback loop in that software is continuously pushed to pro-
duction, while at the same time usage data from production is fed back to product
management in order to better comply with customers’ wishes (Shahin et al., 2014).
Note, however, that the arrow not only concentrates on the feedback loop from pro-
duction to product management, since along the way to production, other feedback
loops can be observed as well.

For instance, when putting the emphasis on the development environment, code is
branched and merged, while branches are preferably built in a continuous manner
to quickly detect integration errors, which gives direct feedback to the developer.
Aside from that, broken build detection mechanisms trigger development to fix the
code if the freshly integrated code yields a broken software build. The same holds
for test automation. For example, when a test on the testing environment or the
acceptance environment does not pass, developers might have to fix the code after
which the tester needs to perform another test on the software build. As already
might have been inferred, deployment automation is also interwoven in the feedback
loop, as a software build needs to transfer from environment to environment in order
to be developed, tested and run in production and thus deployment of the software
build is needed on the corresponding environments. Next, release for production
is another focus area that is covered by the feedback loop, since the focus area
houses capabilities denoting quality criteria to be complied with that could concern,
among others, a verification check that checks whether the software build works
in production in order to declare software done. If, for instance, it turns out that
a software build does not comply with the criteria, it needs to be re-factored in
such a way that it passes this verification check and thus works in production. The
last focus area that falls in the domain of the green arrow is incident handling,
since if an incident is detected in production, it should be fixed, whereafter the fix
should be tested again, meaning that in case of a software related incident, product

41

management, developers, testers and operations people, among others, must take
action in order to prioritize the incident and develop and test the fix, after which
the fix can be transported to production and released again.

Needless to say, all the focus areas presented in the product, process and quality
perspective affect the focus areas reflected in the culture and collaboration perspec-
tive, while this also applies the other way around. Indeed, when incidents come
in that concern software bugs, product management, developers, testers and op-
erations should communicate so that the resulting fix can be put into production
again in a timely fashion, to name an example. Hence, arrows were adopted to show
the relation between the culture and collaboration and product, process and quality
perspectives.

4.2.1.3 Foundation

Moving away from the product, process and quality perspective to the foundation
perspective, the observation is made that the foundation perspective encompasses
three focus areas that stretch from development to production and aim to support
the process depicted in the product, process and quality perspective. The reason
for stretching these in such a way is underpinned by the fact that for all displayed
environments configuration items such as OS, middleware, database versions etc.
should be managed (Humble & Farley, 2010). Additionally, each environment has a
technical architecture, which is also concerned with the software architecture (e.g.
install allocation view (Berner, Weber, & Keller, 2014). Last but not least, infras-
tructure inherently mirrors all environments, as Humble and Farley (2010) describe
that environments are a representation of infrastructure. The relation between these
focus areas and four environments is also clarified by the arrows adopted between
the product, process and quality and foundation perspectives.

Next to the aforementioned, the three focus areas at the bottom are associated with
one another. That is, provisioning infrastructure with the correct configuration items
to make environment ready for deployment requires configuration management. In-
deed, configurations with which environments are provisioned are retrieved from a
certain location, be it a manual or a version control system in which the configuration
items are managed. Hence, the association between these two. Further, architec-
ture alignment is associated with configuration management, since the architectures
(i.e. both software and technical) describes the configuration (i.e. source code and
infrastructure configurations such as middleware configurations etc.) at a higher
abstraction level (Westfechtel & Conradi, 2003; Hall, Heimbigner, Van Der Hoek, &
Wolf, 1997). Additionally, adaption of the configuration leads to adaption of the ar-
chitecture, and the other way around. Besides, when looking at the relation between
the infrastructure and the architecture, an architecture describes the structure of
the infrastructure at a higher abstraction level (Laan, 2013). Also here applies that
the adaption of either of these leads to a modification of the other.

42

4.2.2 Stakeholders

When further observing the model from a broader perspective, the internal stake-
holders involved in DevOps in the context of a SPO are displayed and come in many
forms. An example of such a stakeholder is management that could be represented
by business unit managers, which are responsible for a certain business unit that
delivers a set of products or software development managers, who take the lead of an
amount of teams that develop a certain product. In addition, product management
represents an important stakeholder covering product managers and product owners,
who take care of the product and release planning and requirements management
concerns. Architecture is also deemed a stakeholder, which involves software and
technical architects that deal with the software and technical architecture, which
prescribe the structure of the software and the structure of the technical landscape
on which the developed software should land. Then there are also the developers,
testers (including information security) and operations people, who take care of de-
veloping and testing the software and maintaining the infrastructure. Maintaining
the infrastructure, here, refers to keeping environments up to date with regard to
configurations and the like and arranging deployments. However, operations is also
concerned with providing support and monitoring environments, among others. Ex-
ternal stakeholders, however, are represented by customers and third parties, where
customers could form public or private sector customers to which software is released
and from which requirements are retrieved. Besides, third parties could form open
source or licensed parties on which an internally developed product depends.

4.2.3 Relation with the drivers

Recall from the previous results section that the drivers identified were create a
culture of collaboration, agility and process alignment, automation, higher quality,
develop and deploy cloud based applications and continuous improvement. When
perceiving the DevOps competence model, the perspectives residing in the model
relate to multiple of these drivers. This is also shown in Table 4.2, where the rela-
tions between the drivers and the perspectives are made visible. Below the table,
a motivation for each of the presented relations is given. Worth mentioning here,
however, is that continuous improvement is in fact present in the whole DevOps
competence model, since all perspectives include contents that aim to improve pro-
cesses. However, as becomes clear below, a number of focus areas cover capabilities
that are inherently related to continuous improvement.

43

Table 4.2: perspectives related to the drivers

Perspective Drivers
Culture and Collaboration Culture of collaboration, Agility and

process alignment, Continuous im-
provement

Product, Process and Quality Culture of collaboration, Agility and
process alignment, Automation, Higher
quality, Development and deployment
of cloud based applications, Continuous
improvement

Foundation Agility and process alignment, Automa-
tion, Higher quality, Development and
deployment of cloud based applications

4.2.3.1 Culture and collaboration

When observing the culture and collaboration perspective, communication, knowl-
edge sharing and trust and respect mostly aim to create a culture of collaboration,
as also recognized by Plwakatare et al. (2015). However, the focus areas adopted
here are also important for achieving agility and process alignment. Moreover, direct
communication among interdisciplinary parties can prevent process problems (Bass,
Jeffery, Wada, Weber, & Zhu, 2013), while knowledge sharing creates a shared un-
derstanding that benefits the whole DevOps movement (Babar, 2015a). Trust and
respect also contributes to the performance of an organization in terms of releas-
ing software and dealing with feedback (Davis & Daniels, 2016). Finally, a team
comprising various people from different backgrounds reduces hand offs (Narayan,
2015) and alignment between dependent parties makes that software can be released
on time. Next to the creation of a culture of collaboration and agility and process
alignment, communication and knowledge sharing can also be related to continu-
ous improvement in that DevOps strives continuous improvement of communication
by leveraging peer reviews and tracking project tracking systems, while the move-
ment also fosters continuous knowledge sharing improvement through communities
of practice (Davis & Daniels, 2016).

4.2.3.2 Product, Process and Quality

Looking at the product, process and quality perspective, its focus areas are mainly
related to the agility and process alignment, automation, higher quality and continu-
ous improvement drivers. Moreover, branch and merge is associated with agility and
process alignment in that a proper branching and merging strategy allows multiple
developers to work on functionality, which positively influences alignment during
development. Build automation, on the other hand, leans towards automation and

44

higher quality as the emphasis of this focus area is on building software as frequently
as possible in order to detect integration errors quickly, which also relates to shift-
ing left quality by detecting errors as early as possible, which forces code to be of
high quality (Humble & Farley, 2010). Development quality improvement, however,
is mostly linked to higher quality, as this focus area considers the enhancement of
quality during development, but also relates to continuous improvement as code
quality is constantly aimed to be improved by employing code reviews and setting
quality gates, among others, as becomes further clear in the focus areas and ca-
pabilities result section. Next, release heartbeat has most affinity with the agility
and process alignment driver in the sense that product management should take
into account the needs of internal stakeholders and external stakeholders at an early
stage and makes decisions regarding what is to be released. If this is not done in
a proper manner, software might be released that is not according to customers’
wishes, which might yield more rework, which in turn negatively impacts the re-
lease of new functionality. Continuous improvement is also associated with release
heartbeat in that a capability of this focus area aims to continuously improve the re-
lease heartbeat, while at the same time continuously amplify feedback loops residing
in the DevOps movement by monitoring holistic metrics and leveraging techniques
such as value stream mapping (Kim et al., 2016). As build automation, test au-
tomation and deployment automation also relate to automation and higher quality
in that tests and deployments should ideally be automated to such an extent that
each test and deployment can occur for each change, thereby taking away man-
ual interventions, which, as said before, are error prone and are of lower quality.
However, deployment automation also relates to develop and deploy cloud based
applications in that the continuous deployment phenomenon, which entails pushing
each check-in to production after passing all automated tests, is often seen in direct
relationship with software as a service (Bosch, 2014). Release for production, how-
ever, is mostly related to higher quality as such a definition entails quality checks to
be carried out before software can be released (e.g. release documentation is ready,
integration tests have been carried out, software works in production etc.), while a
culture of collaboration could also be considered a related driver in that a proper
definition of release could force divergent parties to work together. I.e. software
that works in production is declared done, which means that this quality check can
only be checked off after software really works in production. If this is not the case,
it might take a system administrator to contact a developer to collaboratively find
out why the software does not work in production. Further, incident handling also
relates to a culture of collaboration, as root causes of incidents are to be identified
in a blameless manner, which involves both developers and operations professionals.
However, incident handling not only relates to a culture of collaboration, as it also
stresses automation, higher quality and continuous improvement. More concretely,
analytics might be used to help detect root causes of incidents and aids in preventing
these incidents from recurring, which results in a higher quality product. Further,
continuous improvement is inherent to incident handling as monitoring for incidents
aids in constantly improving the product.

45

4.2.3.3 Foundation

When a shift in focus is made to the drivers in relation to the focus areas mak-
ing up the foundation, the drivers mostly stressed by these focus areas are agility
and process alignment, automation, higher quality and the development and de-
ployment of cloud based applications. Moreover, when looking at configuration
management, configuration items are favored to be stored in a version control sys-
tem, which enables fast automated provisioning of environments in a consistent
way, which diminishes configuration drift (Ravichandran, Taylor, & Waterhouse,
2016) and results in higher quality provisioning, since provisioning can be done in
an automated and repeatable manner (Humble & Farley, 2010). Besides, when ob-
serving infrastructure, two cloud models, namely IaaS (infrastructure as a service)
and PaaS (platform as a service) are often used to support the development and
deployment of cloud based applications (Bass et al., 2015), where IaaS is used in
particular to offer cpus, storage and the like to the consumer (e.g. the developer)
and makes infrastructure between development and production more equivalent by
sharing the same underlying hardware including cpus, storage etc., which results in
a more streamlined process, because the chance of having deployment problems due
to highly divergent environments is minimized (Bass et al., 2015; iv-13). PaaS goes
even one step further and also offers web servers, database servers and the like to
the consumer, which could be a developer, so that direct deployment of cloud based
applications can be established without the need for first configuring an environment
by, for instance, installing a web server before deployment can occur (Bass et al.,
2015). Lastly, architecture alignment supports the above as a resilient architecture,
such as a microservices architecture, is often recommended to be chosen if an orga-
nization wants to offer cloud based software as a service (Familiar, 2015). This type
of architecture is resilient to change and is suitable for releasing small independent
pieces of functionality wrapped in a service (Erder & Pureur, 2015), which stresses
agility, as small packages can be released to customers in a quick manner if such an
architecture is embraced.

4.2.4 Changes with respect to the initial DevOps compe-
tence model

When perceiving the improved version of the DevOps competence model (Figure 4.1)
in relation to the initial version of the DevOps competence model (Figure 4.2),
a number of changes can be observed. These changes are briefly summarized in
Table 4.3 and concern additions, modifications and removals of elements. More
elaborate information on the changes of the improved DevOps competence model
with respect to its improved counterpart can be found below Table 4.3.

46

Table 4.3: DevOps competence model changes

Alteration Focus area Perspective
Added Development quality

improvement
Incident handling
Release heartbeat
Deployment automation
Branch and merge
Build automation

Foundation

Changed Definition of done
�Definition of release
Testing �Test
automation
Alignment �Release
alignment
Architecture
�Architecture
alignment

Culture of collaboration
�Culture and collabora-
tion

Removed Product
Process
Quality
Requirements
management
Prioritization
Release and validate
Provisioning and
deployment
Shared components
Third party components
Integrate and build

Continuous improvement

At first, the initial version of the DevOps competence model displays a roof that
was initially formed by a continuous improvement perspective including focus areas
aiming to improve a culture of collaboration, the process of developing and releasing
software, quality within this process and the product that eventually runs in pro-
duction and is used by customers. Yet, input from the workshop validation session
(w-v-1) and one of the follow up validation sessions (f-v-1) suggested to process
contents from this perspective into other parts of the model.

“... Then, contents [from the continuous improvement perspective] should be adopted
elsewhere in the DevOps competence model . . . (w-v-1).”

“... culture of collaboration can be processed in the culture of collaboration perspective
(w-v-4).”

47

Culture of collaboration

Product, Process and Quality
Dependent parties

Shared
components

Acceptance
environment

Development
environment

Test
environment

Production
environment

development

tactical/operational
stakeholders

test/QA, infosec

Third parties

Third party
components

strategic/tactical/
operational

stakeholders

Communi-
cation

strategic/tactical/
operational

stakeholders

Knowledge
sharing

strategic/tactical/
operational

stakeholders

Trust and
respect

product
management,
sales, design,
development,

operations, CM,
public- and

private sector
customers,

infosec

product
management,
development,

test/QA,
operations

requirements

prioritized
requirements

prioritized
requirements

services

feedback

development, test/QA, operations

Provisioning and Deployment

shared
components

third
components

strategic/tactical/
operational

stakeholders

build
and

config

Team
organization

Alignment

build
and

config

build
and

config

build
and

config

Legend

(potentially)
involved

stakeholders

data flow

association

Continuous
improvement

development, configuration management (CM)

(Software) configuration management

software architects, technical architects

Architecture

Internal IT, operations

Infrastructure

Requirements
management

Prioritization

Release and
validate

Definition of
done

Integrate and
build

Testing
(Acceptance)

Testing

Product Process Quality

Culture of
collaboration

Focus area

Perspective

Figure 4.2: Initial DevOps competence model

As a consequence, the continuous improvement was removed and caused the cul-
ture and collaboration perspective to take the position of the roof. Perceiving this
perspective, a small change was processed, namely the word ”of” was replaced with
”and”, since some focus areas lean more towards pure collaboration (i.e. release
alignment) than culture (i.e. trust and respect). Hence, this subtle change was
processed. As can be observed further, the DTAP-street was already present in the
initial version of the DevOps competence model. However, the same could not be
said of contents residing in the DTAP-street. Indeed, several improvement sugges-
tions came across during workshop validation session in which the initial DevOps
competence model was validated, as the quotes below show:

“The model makes sense, but the production environment is empty. . . So it goes
to production and then nothing happens anymore?...you work iteratively during a

48

sprint and behavior of the application in production is fed back to the backlog (w-v-
3).”

“...When you adopt continuous integration and delivery, you are constantly iterating
before even reaching production (w-v-3).”

The feedback loops inherent in the quotes above were eventually made explicit by the
green arrow adopted in the improved version. Further observing workshop validation
and follow up validation input (f-v-2) with respect to this part of the model, it was
advocated by one of the participants (w-v-2) to combine the product management
related focus areas (i.e. requirements management, prioritization, releasing and
validate) into one focus area, which was called release heartbeat after processing the
feedback:

“You can summarize this block [product management related focus areas] in one focus
area to prevent having an unbalanced model [where too much focus is on product
management] (w-v-2).”

After processing the input, the release heartbeat focus area only incorporated the
most important parts for DevOps from a poduct management point of view and
concentrated on moving towards requirements gathering, prioritization and releasing
and validation suited to a DevOps situation. However, definition of done, which was
considered a product management related focus area as well, was turned into the
release for production focus area aiming more towards matters to be arranged before
and after releasing software, as was suggested by a follow up validation session (f-
v-2). This focus area was also not processed in the release heartbeat area, but was
incorporated as a separate focus area as also suggested by the aforementioned follow
up validation session.

Aside from assembling one release heartbeat focus area, the testing focus area was
renamed to test automation because of workshop validation input (w-v-1). Also,
it might be observed that deployment automation is represented differently in the
initial version of the model, where deployment is represented together with provi-
sioning. Second validation round input (iv-v-1;exp-v-3;exp-v-4;exp-v-5), however,
caused provisioning to be incorporated into infrastructure and caused deployment
automation to be placed in the middle part of the model, which indicates that
deployment is seen as an iterative process instead of a supporting process in the
improved version of the DevOps competence model. A quote below also shows that
deployments are more prone to iterativity than provisioning:

“...a deployment can occur on the same virtual machine [that is already provided
with a compatible configuration], which makes that this virtual machine does not
need to be provisioned again... (exp-v-5).”

When further scrutinizing both versions of the DevOps competence model, it be-
comes apparent that the shared and third party component focus areas were still

49

present in the initial version of the DevOps competence model, but were not present
in the improved version of the DevOps competence model anymore. As becomes
clear in the next results section, contents of these focus areas were processed in the
release alignment and architecture alignment focus areas, as suggested by workshop
validation input (w-v-1; w-v-4):

“[shared and third party components] belong to two focus areas. Technically, com-
ponents have to do with architecture, but also with alignment. . . so, you can make
these components explicit in [release] alignment and architecture [alignment] (w-v-1;
w-v-4).”

A last change observered when comparing the product, process and quality perspec-
tive from both the initial and improved version is that the fact that the integrate
and build focus area does not exist anymore in the improved version of the De-
vOps competence model. Moreover, workshop validation input (w-v-6) suggested to
split the initial integrate and build focus area into a branch and merge and build
automation focus area.

“Branching is used to develop multiple features simultaneously, and could be dis-
cerned as completely unrelated to building...Branching should be positioned some-
where else. A replacement for this could be creating build manually. As for branch-
ing/merging, a maturer capability could be working with feature flags [toggles] (w-v-
6).”

As a consequence, branch and merge and build automation that arose as a result
of splitting integrate and build, are present in the improved version of the DevOps
competence model. Finally, the configuration management, architecture alignment
and infrastructure focus areas are surrounded by a foundation perspective in the
improved version in order to better explicate the fact that these focus areas support
the focus areas in the product, process and quality perspective.

Aside from the alterations due to validation input, also a number of small changes
that did not arise from the validation have been processed. Moreover, alignment
was renamed to release alignment as the capabilities inherent to the alignment ca-
pability are concerned with release alignment. Further, architecture was changed
to architecture alignment as, again, the emphasis of the architecture alignment ca-
pabilities was mainly on software and technical architecture alignment. Further,
automation complemented deployment, which resulted in deployment automation
as a focus area name. Here, the name was also led by the corresponding capabilities
that mainly deal with automating deployment. At last a change can be remarked
when looking at the DTAP street itself. Here, the word ”environment” was removed
as this word was regarded as redundant.

In addition to the main contents of the DevOps competence model, also the relations
in the first version differed from the relations adopted in the improved version.
Moreover, workshop validation input (w-v-1) confirmed that the visualization of

50

relations required reconsideration. A quote from the workshop validation pertained
to the aforementioned underpins this:

“Data flow arrows have no added value. The addition of arrows either causes com-
plexity or triviality (w-v-1).”

On the basis of the input above, relations were made clearer by adopting one sort
of notation to denote relationships between elements, while clutter was removed by
only adopting arrows where necessary. The last change observed when comparing
the two DevOps competence model versions pertains to the stakeholders. The way
stakeholders were presented in the first version was considered unclear:

“The stakeholders should be adopted in a more abstract way . . . stakeholders could
be positioned the same as in the SPM model (w-v-1).”

Following the feedback, stakeholders were mentioned in a more abstract way in the
improved version by adopting the same structure of presenting stakeholders as in
the SPM competence model of Bekkers et al. (2010).

4.3 Focus areas and capabilities

This section presents the focus areas and capabilities that were made up from in-
terview data, literature and validation input originating from the first and second
validation sessions. The presentation of these results is led by the DevOps compe-
tence model earlier presented. As such, each perspective of the DevOps competence
model is presented, whereafter the evolution of coming to the final capabilities is
presented for each focus area that falls into the domain of the presented perspective.
While discussing this evolution, initial perspectives, focus areas and capabilities and
their counterparts after the first validation round are also discussed. However, the
main focus of this section is on final results and and thus the perspectives, focus areas
and capabilities that were formed initially and after conducting the first validation
round can be found in Appendix C. Furthermore, each focus area is accompanied by
a maturity order rationale that outlines the reasoning behind the maturity ordering
with regard to the capabilities and is based on reasoning, literature, interview data
or validation input.

4.3.1 Culture and collaboration

The first set of results relates to the culture and collaboration part of the DevOps
competence model, which is depicted in Figure 4.3. As became clear earlier, this
part consists of four focus areas, namely communication, knowledge sharing, trust
and respect, team organization and release alignment.

51

Culture and
Collaboration

Communi-
cation

Knowledge
sharing

Trust and
respect

Team
organization

Release
alignment

Figure 4.3: The culture and collaboration perspective

4.3.1.1 Communication

The communication focus area concerns communication among interdisciplinary pro-
fessionals, among which are dev and ops professionals and management that should
occur to ensure that interdisciplinary professionals and management know of each
other’s activities while working towards releases and prevent problems that might
arise due to a lack of communication.

Observing the first capability, second validation round input from all four experts
(exp-v-1; exp-v-2; exp-v-3; exp-v-4) and interview data (iv-4) suggested to address
an indirect way of communicating as capability A. One of the experts made clear
what this indirect form of communicating meant from his point of view:

“...At first, there is almost no or no communication between departments [interdisci-
plinary professionals]. And if this takes place, it occurs through a manager, because
then someone from a workgroup complains to his manager after which that same
manager communicates the complaints to the manager of the other workgroup, who
in turn communicates it to his workgroup (exp-v-3).”

Resulting capability:

A. Indirect communication
Action: communication between interdisciplinary professionals, among which
are dev and ops professionals, is indirectly established (e.g. through proce-
dures,managers, software architects).

Considering the next capability, initial interview results suggested that a governance
model could be used to trigger interdisciplinary communication (iv-13). However,
workshop input showed that interdisciplinary communication first had to be di-
rected by management to trigger direct communication between interdisplinaliry
professionals before formalizing communication lines in a governance model (w-v-
1;w-v-2). Therefore, the choice was made to change the capability according to the
feedback from the first validation round.

During the second round, on the contrary, one interviewee (iv-v-6) and one expert
(exp-v-1) noted that management should act in a facilitated way instead of a direc-
tive way. Hence, this caused the capability to be formulated less directively. The
input of the interviewee, who was a manager himself, showed that a facilitating way
of management was preferred to enable direct communication between profession-
als: 52

“... you can say to the professionals to communicate with one another, but if you
[as management] do not give professionals one day in order to prepare a two hour
session [to name an example], then you are not facilitating [direct] communication
(iv-v-6).”

Note, however, that in the capabilities after processing the first validation round
in appendix C, direct communication first came in front of facilitated communica-
tion. This order was thus shifted due to the second round validation input outlined
above, which makes clear that direct communication should first be facilitated by
management in order for direct communication to occur.

Resulting capability:

B. Facilitated communication
Action: direct communication between interdisciplinary professionals, among
which are dev and ops professionals, is facilitated by management by stimulat-
ing professionals to communicate directly (e.g. by giving professionals time to
prepare sessions).

One of the experts of the second round validation (exp-v-3) denoted that this direct
communication, as a result of facilitating direct communication, could occur through
mailing lists or personal contact:

“... Then, direct communication occurs because they know each other [personal
contact] or via a mailing list so that they can approach one another without needing
management (exp-v-3).”

Resulting capability:

C. Direct communication
Action: direct interdisciplinary communication between professionals, among
which are dev and ops professionals while working towards a release is present.
This direct communication could occur through mailing lists, personal contact
etc.

When moving further to the next capability, the second validation round considered
the governance model, which was firstly present and formed by interview data (iv-13,
iv-5, iv-6), too top down by two experts (exp-v-1; exp-v-4). One expert explicitly
made clear that a more bottom up view should be covered by the capability:

“[the capability including the governance model] is formulated very traditionally. It
should cover easy escalation of impediments to ... management (exp-v-1).”

It further became clear from Bjork (2015) representing one of the cases of one of the
inteviewees (iv-15) that daily standups, retrospectives contribute to structured com-

53

munication between teams including dev and ops and that contact was maintained
with product management to keep track of impediments, among others. Based
on this input, the capability first covering the governance model was set up less
restrictively by not explicitly mentioning the governance model and by further in-
corporating the the input that was found after the second validation round.

Resulting capability:

D. Structured communication*1

Action: a structure for interdisciplinary communication is in place (e.g. by holding
daily standups and retrospectives with interdisciplinary professionals including
dev and ops, and by maintaining contact with (product) management to discuss
about impediments along the way, work to be done the upcoming sprints and the
technical debt situation, among others).

Finally, when observing, the last capability, namely communication improvement,
this capability was constructed from the literature that was also used to form a ca-
pability from the eliminated culture of collaboration focus area, which was deleted
after processing first validation round input. Moreover, communication improve-
ment found its roots in literature and incorporated the use of feedback mechanisms
and skill matrices to improve communication (Davis & Daniels, 2016). After the
second validation round, this capability was complemented with the input of one
expert (exp-v-4) stating that the organization the expert works for is constantly
on the lookout for new practices to improve communication and uses experiments
with insights from industry in order to improve communication, which resulted in a
capability E:

“When looking at communication improvement . . . You see that these communica-
tion models are constantly evolving and new insights from the industry are processed
in these models to find out if these insights also work for our organization (exp-v-
4).”

Resulting capability:

E. Communication improvement*
Action: communication among management and interdisciplinary professionals,
including dev and ops, is improved (e.g. by adopting and trying out new communi-
cation practices from industry, learning from experiences and by tracking projects
or using instruments such as skill matrices and peer feedback mechanisms over
time).

Maturity order rationale
Capability A forms the first capability of communication, since communication
among interdisciplinary professionals was found not to occur directly in traditional

1Capabilities provided with an asterik were not part of the case study.

54

SPOs. In turn, direct communication between interdisciplinary professionals turned
out to be enabled by management by facilitating interdisciplinary professionals to
communicate directly. Thus, capability B follows from indirect communication,
while capability C follows from facilitated communication, which shows a progression
in maturity. However in an even more mature situation capability D was detected
that aids in structuring the communication between interdisciplinary professionals
and management. Finally, communication between interdisciplinary professionals
needs to be continuously improved, as capability E incorporates. Since ongoingness
is inherent in this capability and is thus not likely to stop, capability E forms the
most mature capability.

4.3.1.2 Knowledge sharing

Knowledge sharing, as a focus area, is concerned with knowledge sharing between
interdisciplinary professionals in order to create a shared understanding. This knowl-
edge could be both functional and technical in nature. It might, for instance, be
of interest to product managers to share functional knowledge, whereas develop-
ers and operations are more interested in sharing technical knowledge with one
another.

The first capability, decentralized knowledge sharing, arose from second validation
round input, which showed that two of the four experts (exp-v-3; exp-v-4) addressed
a more premature stage, where knowledge sharing takes place between interdisci-
plinary professionals, albeit in a decentralized way, as was made explicit by one of
these experts:

“... In front of A [centralized knowledge sharing], you could put in place a capability
that involves people making documents or notes, which can subsequently be shared
... So, you then have a knowledge sharing facility, which is not centralized. A
[capability] could then be to have these notes shared among dev and ops (exp-v-
3).”

Resulting capability:

A. Decentralized knowledge sharing
Action: knowledge is shared between interdisciplinary professionals, among which
are dev and ops professionals in a decentralized way (i.e. through notes or docu-
ments).

Centralized knowledge sharing, on the contrary, emerged from Dooley (2015) and
from interviewdata (iv-8) and suggested to have centralized knowledge sharing fa-
cilities in place that ease knowledge sharing between interdisciplinary professionals.
Input from the second validation round (iv-v-8) was used to enrich this capabil-
ity with an example of a structure that could be interwoven in such a centralized

55

knowledge sharing facility.

What you actually want to have is an information model that shows what information
must be in place for a product. . . for a product you could say: there must always be
an application architecture, there must be contact persons, technical documentation
must always comply with certain standards. By storing information in such a way,
you create expectations of what people could search for (iv-v-8).

Resulting capability:

B. Centralized knowledge sharing
Action: knowledge is shared between interdisciplinary professionals, among which
are dev and ops professionals, through centralized knowledge sharing facilities
(e.g. an example of sharing knowledge in a centralized way could be a central
knowledge sharing platform, which underlies an information model that prescribes
what should be available for each application (e.g. a software architecture, contact
persons, technical documentation should adhere to certain standards etc.) so that
knowledge can be easily retrieved from a central point).

Another form of knowledge sharing, which concerns active knowledge sharing, was
also discovered in initial interview data (iv-4;iv-6), where people were sharing knowl-
edge actively with one another.

. . . and mutual knowledge sharing happened way too late [before DevOps]. So now,
for some solutions, dev and ops agree actively with one another on what impact
certain development solutions have on a virtual machines and on load at an early
stage (iv-6).

Resulting capability:

C. Active knowledge sharing
Action: knowledge is shared actively between interdisciplinary professionals,
among which are dev and ops professionals (e.g. an example of active knowl-
edge sharing could be dev and ops sharing knowledge on what impact certain
development solutions have on a virtual machines and on load or training that is
provided by dev to ops)

Further, initially the next capabilities (C and D) included communities of practice
and communities of interest in which higher level management matters are discussed
and which coordinate communities of practice (Davis & Daniels, 2016). Yet, during
a follow up validation session (f-v-2) it was chosen to replace communities of inter-
est with a strategic knowledge sharing policy that formed around the continuous
improvement of knowledge sharing within the organization by fostering the con-
tinuous existence of communities of practice and tracking knowledge sharing using
metrics such as the number of contributions to a knowledge sharing facility, which

56

came from literature that underlied the eliminated culture of collaboration focus
area (Ravichandran et al., 2016). However, second validation round input from
two experts (exp-v-2; exp-v-3) considered a policy to be too top down and opted
for communities of practice, which were initially recognized in literature (Davis &
Daniels, 2016;SAFe, 2016), to take its place, as shown by the quote below.

“If you empower [communities of practice], you will not need [a knowledge sharing
policy] anymore . . . Saying I have SharePoint and everyone must share an article
every day does not work. Rather, you must give credit for the work that comes from
a community [community of practice] . . . if you see that this works (i.e. a certain
technique is used by one group and is also voluntarily picked up by another group) you
can place the team that started using a technique on a pedestal and give them credit,
then this could work as a flywheel throughout the organization (exp-v-2).”

Because two independent experts argued communities of practice to become the
final capability, the choice was made to follow their input.

Resulting capability:

D. Communities of practice
Action: knowledge is shared through communities of practice, which are com-
posed of multidisciplinary professionals that share a common interest (e.g. such a
community of practice could be built around continuous delivery and encompass
developers and operations people).

Maturity order rationale
Initially, knowledge sharing takes place in a decentralized way with no structure
imposed. As a result, capability A forms the least mature way of knowledge sharing
among interdisciplinary professionals. A more mature way of knowledge sharing
is then achieved by sharing knowledge in a centralized way, which is covered by
capability B. This capability represents a more mature situation in that knowledge
can be retrieved from a centralized location. However, in a more mature situation,
where DevOps was already more embraced, knowledge was shared activity among
interdisciplinary professionals and thus capability C was adhered to. Yet, capability
D includes active knoweldge sharing through communities of practice and forms the
most mature situation, as communities of practice do not have to be built around
certain groups or products, but could reside in the entire organization, meaning that
people from the entire organization could participate in such communities. Also,
communities of practice can be used to continuously improve knowledge sharing,
which indicates such communities are ongoing in nature.

57

4.3.1.3 Trust and respect

The trust and respect focus area concentrates on initiating, facilitating and main-
taining a healthy culture for interdisciplinary professionals and management.

Initially, the first capability was aimed at achieving technological improvement by
product management giving professionals the time to experiment with new ideas, as
shown by interview data (iv-3; iv-8; iv-12):

Product planning [product management] does not listen to development in that prod-
uct management pushes development to constantly make new features, while a lot
bugs should still be fixed first. . . Product management should also give time to trans-
fer to new technologies (iv-8).

Still, the second validation round affected the above. Moreover, input of four inter-
viewees (iv-v-3; iv-v-6; iv-v-8; iv-v-12) and two experts (exp-v-1; exp-v-5) showed
that the first capability had to be aimed more towards autonomy, collaboration and
learning, instead of technological improvement. It also became clear that the indi-
viduals themselves should accept working with one another in order for collaboration
and learning to occur and that planning should support this.

“ ... technological improvement does not belong to trust and respect ... However,
planning ... should certainly be open to have people work together... Moreover, the
planning should force people to work together through which they built up trust and
respect (iv-v-6).”

A healthy culture can be reached by giving ... autonomy. But in that case you might
have to deal with people who do not feel comfortable. For instance, a developer who
does not want to help in deploying the product . . . [As a result, team members
must also be willing to collaborate] (exp-v-5).

In addition, the second validation round input triggered to view the gained second
validation round input in the light of earlier interview data, since level of autonomy
and willingness of professionals to collaborate were seen as important factors to
initiate trust and respect. More specifically, in the case of (iv-5), trust and respect
was initiated by conducting DevOps rotations, where developers were assigned for a
certain amount of time to perform operations tasks, such as monitoring and fixing
operational incidents on a rotational basis. In literature, however, this approach is
also recognized by Nybom, Smeds, and Porres (2016), who see rotations as a fruitful
approach to learn new skills, foster collaboration, and to start building trust among
development and operations. Hence, these rotations were adopted in the capability
as a an example how to initiate the creation of trust and respect.

Resulting capability:

A. Culture of trust and respect initiation

58

Action: dynamics, level of autonomy and planning are open for collaboration and
creation of trust and respect between interdisciplinary professionals, among which
are developers and operations people. An example here is a DevOps duty rotation
where developers are allocated for an amount of time to take on operational tasks
and become familiar with these tasks.

When observing the next capability, trust and respect should not only reside among
members within a team, but management should also be involved in creating a
culture of trust and respect. Hence, initially the creation of the following capability
was led by interview data (iv-12; iv-13) stating that management should create a
culture of trust and respect.

Yet, second validation round input from three experts (exp-v-1; exp-v-2; exp-v-3;
exp-v-5) and two interviewees (iv-v-6; iv-v-12) suggested that capability B was found
to be formulated too top down since this capability was suggested to be aimed more
at management facilitating such a culture instead of management creating such a
culture:

“There has to be a culture that permits making mistakes, and the faster you make
mistakes the better, as making mistakes leads to learning (iv-v-12).”

“Capability B should incorporate the acceptance of the emergence of a culture of
trust and respect, because management does not create a culture of trust and respect.
Rather, such a culture must be permitted (exp-v-3).”

“... [Managers should] know what the people at an operational level are doing, which
equals to servant leadership. They, thus, must be capable of doing what the people
at an operational level are doing (exp-v-1).”

Resulting capability:

B. Culture of trust and respect facilitation
Action: a culture of trust and respect is facilitated by management. Facilitation
by management means that management should not manage by fear, but should
act as a servant leader that supports professionals in day-to-day tasks, has an un-
derstanding of operational tasks and allows interdisciplinary professionals, among
which are dev and ops professionals, to learn quickly from mistakes.

The final capability of trust and respect concerned maintaining a culture of trust and
respect was initially present and was thus formed by both interview data (iv-6) and
literature (Hüttermann, 2012; Walls, 2013), mainly stating that a culture of trust
and respect could be maintained by rewarding dev and ops the same way, advocating
transparency to prevent blaming and working towards shared goals.

59

Resulting capability:

C. Culture of trust and respect shared core values
Action: the culture of trust and respect between interdisciplinary professionals,
among which are dev and ops professionals, is maintained by following shared
core values such as rewarding dev and ops as a group when a release is successful,
being transparent and open towards one another to prevent blaming, and working
towards shared goals (e.g. bringing out the release together, where together means
with dev and ops).

Maturity order rationale
At first, interdisciplinary people must be willing to cooperate, which can be achieved
by having healthy dynamics, a high degree of autonomy and an open planning that
allow for collaboration so that trust and respect among interdisciplinary profession-
als can be initiated. The aforementioned input to capability A was also shown by
interview data of a case that were in the midst of transferring to DevOps. After
initiating trust and respect, trust and respect should be facilitated, which forms
the core of capability B. Hence, management should further facilitate collaboration
by acting as a servant leader and supporting professionals with their operational
knowledge. A quote from (exp-v-5) also underpins the aforementioned order:

Another good example is the following: when an agile/scrum and DevOps project is
carried out, it is difficult for management to steer such a project due to the fact that
management is used to receive reports and adjust the project if needed. However, the
new way of working [DevOps way of working] management must trust that everything
will be all right and as management you need to participate and facilitate and not
work with steering committees, who want to read documents and directly act...So
first a culture of trust and respect should reside in the team [between interdisciplinary
professionals] and then management should facilitate such a culture (exp-v-5).

As soon as a culture of trust and respect is initiated and facilitated, capability C
forms the next step by maintaining such a culture with the help of shared core
values.

4.3.1.4 Team organization

The team organization focus area concentrates on the establishment of cross func-
tional teams, which contribute to closer interdisciplinary collaboration between in-
terdisciplinary professionals and fewer hand offs.

Initially, the first capability was formed by interview data stating that teams were
in place that were composed of people on the front-end (e.g. product owners, devel-
opment and testers) excluding operations (iv-1, iv-2). However, this type of team
organization represented capability B, as the input from two experts participating

60

in the second validation round, recommended another least mature capability to be
added, which incorporated complete team separation. A quote from one of these
experts is shown below.

“Capability A should be formulated even more separately. In the American literature
people speak of separate Q/A teams. I would suggest moving current capability A one
level further and replace its current position with a capability that denotes complete
separation, where, for instance, test teams and design teams are separate (exp-v-
5).”

Resulting capability:

A. Separate teams
Action: separate teams are present (e.g. development teams, testing team, oper-
ations teams etc).

Resulting capability:

B. Cross functional teams excluding ops
Action: cross functional teams are present that exclude operations (e.g. teams
consisting of developers and testers are present).

A next step with regard to team organization was acknowledged by Kim et al. (2016)
suggesting to have teams that include ops which was also recognized by interview
data (iv-8;iv-12;iv-13;iv-15):

“... whereby you will get a multidisciplinary team in which not only developers,
testers and product owners reside, but also operations (iv-12).”

Resulting capability:

C. Cross functional teams including ops
Action: cross functional teams are present that include operations.

The last capability, concerning cross functional teams with knowledge overlap, was
also initially formed from Kim et al. (2016) and interview data (iv-8; iv-12). One of
the interviewees called people with knowledge overlap T-shaped professionals, who
are specialized in one field, but also have an understanding of the fields around
them:

“... Ultimately, we need to form DevOps teams with T-shaped professionals, who
are specialized in a certain domain, but have an understanding of other domains.
(iv-12).”

Resulting capability:

61

D. Cross functional teams with knowledge overlap
Action: cross functional teams are present in which professionals have boundary
crossing knowledge (i.e. T-shaped professionals). An example of such a T-shaped
professional is a developer that is specialized in development, but has knowledge
of operations as well.

Maturity order rationale
Capability A stipulates that work is carried out in separate silos, meaning that
separate teams for a certain domain are present that hand over work to one another.
In a setting where agile software development was already embraced, it was observed
that cross functional teams including professionals from the front-end were present
(iv-1; iv-2), which formed capability B. Yet, in a more mature DevOps organization,
capability C was present (iv-15). Still, the most mature form of team organization, as
deduced from literature and interview data, is reflected in capability D addressing
teams comprised of professionals, who have overlap in knowledge and therewith
overcome inter-team siloization (i.e. people only having an understanding of their
own field of expertise).

4.3.1.5 Release alignment

Release alignment aims at managing internal and external dependencies, both at
a strategic and operational level, to create better collaboration between dependent
stakeholders such as other dependent teams that are working on the same product
or shared component teams and third parties that provide components to teams
that make use of these components in the development of their product.

Initially, alignment, as a focus area, concentrated on a domain specific way of work-
ing and alignment of responsibilities. As a result, interview data suggested that
teams were responsible for the development of software related to multiple domains
(iv-8).

“.. [what we see now,] for instance, [is] a team that is responsible for finance [but]
is also involved in document management and authentication. I think that, with
DevOps, you need to move towards a domain specific way of working. For example,
I [the team] do finance, but authentication is taken care of by another team (iv-
8).”

However, first validation round input deemed concentrating this focus area on a
domain specific way of working and alignment of responsibilities to be incorrect.
Instead, it was advocated to aim this focus area more at alignment of dependencies,
as teams can depend on internally developed software and on externally developed
software from third parties;

62

“...it [shared components] is related to [release] alignment. Because, you will get a
dependency with the one who delivers a shared component [which is integrated with
a product you are developing]. Hence, alignment [between you and the party that
delivers the shared component] should be arranged (w-v-1).”

Further, a follow up validation session built further upon the aforementioned and
stressed that the focus area should aim at alignment with internal and external
dependencies at roadmap level in the first place (f-v-3), which was also recognized by
Bekkers et al. (2010) and also by Ambler (2016), who shows that roadmap alignment
is needed if an internal agile team is dependent on an internal waterfall team for the
deployment of functionality.

Resulting capability:

A. Roadmap alignment
Action: alignment with dependent internal (e.g. shared component groups) and
external stakeholders (e.g. third parties) is considered in the roadmap.

The next capability initially included the fact that product groups should be re-
sponsible for the software of one domain instead of multiple domains, as shown by
the last quote. However, as said before the focus of this focus area changed after
processing first validation round input and input from follow up validation session (f-
v-3) suggested to align internal release heartbeats, next to aligning roadmaps. This
decision, however, was inspired by interview data that formed initial capability C
(iv-15), which covered the alignment of sprint cadences in order to achieve a common
sprint cadence with dependent parties. The capability was also inspired by the input
from (w-v-3) stating that sprints do not necessarily have to be aligned. Deployment
moments, on the other hand, should be aligned when there are dependencies:

”it does not have to be same frequency perse. It could also be the same phase. That
is, one can have a higher release pace than the other. If, in such a case, there are
dependencies, these should be deployed at synchronized moments.”

Resulting capability:

B. Internal release heartbeat alignment
Action: the release heartbeat is aligned with dependent internal stakeholders
(e.g. teams that develop software on which products developed by other teams
rely). An example of such an alignment could be reflected in adopting the same
deployment moments or adhering to a common sprint cadence.

Lastly, while initial capability C was used to form the final capability B, second
validation round input caused a new capability C to be added, since two experts
(exp-v-3; exp-v-4) and two interviewees (iv-v-12; iv-v-1) opted for aligning the re-
lease heartbeat with external parties, which could be third parties:

63

“... There should be a capability C that denotes the release heartbeat alignment with
third party stakeholders... (exp-v-3).”

“... We also have to deal with Linux and Google to which we submit code and in
some cases also open source providers, which means that we have to arrange things
to be sure that our code can be delivered to them in the best possible way. . . capability
C could cover the alignment with third parties in cadence form (exp-v-4)”

Resulting capability:

C. External release heartbeat alignment*
Action: the release heartbeat is aligned with dependent external stakeholders such
as third parties from which software is used in the development of a product.

Maturity order rationale
Capability A describes the least mature situation and points out to manage de-
pendencies with internal and external stakeholders at roadmap level in order to
achieve alignment at product planning level. A more mature case is then reflected
by capability B, which carries the fact that internal dependent teams work in an
agile way, which makes it possible to adhere to an aligned release heartbeat in the
form of a common sprint cadence or common deployment moments. However, since
teams developing a product often depend on third party suppliers, an aligned re-
lease heartbeat with these parties is preferred as well in order to deploy quickly.
The aforementioned is reflected in capability C and at the same time forms the
most mature situation, since third party suppliers might work in a very divergent
way and reside in a context that differs from the context of the internal organization.
Therefore, here also, a third party supplier could still work in a waterfall fashion,
while the internal organization has already embraced an agile mindset. Aligning de-
ployment moments and creating a common cadence might then require more effort
(SAFe, 2012).

4.3.2 Product, Process and Quality

The second part of the DevOps model concerns focus areas pertained to product,
process and quality. Recall these focus areas are release heartbeat, branch and
merge, build automation, development quality improvement, test automation, de-
ployment automation, release for production and incident handling. Figure 4.4
shows this part of the model.

64

Product, Process and Quality

Development Test Acceptance Production

Release for production

Release heartbeat

Test automation

Incident handling

Deployment automation

Dev quality
improve-

ment

Build
automation

Branch and
merge

Figure 4.4: The product, process and quality perspective

4.3.2.1 Release heartbeat

As mentioned previously, release heartbeat formed a combined focus area and was
made up from earlier existing focus areas, which made release heartbeat focus on
tailoring requirements management and release related activities to a DevOps way of
working. The resulting capabilities of the release heartbeat focus area that emerged
from summarizing capabilities from various product management related focus areas
are outlined below. Moreover, capability A was formed by interview data (iv-14;
iv-4; iv-5; iv-2; iv-1; iv-8; iv-7; iv-11) and literature Humble & Farley, 2010 and
concerns gathering functional, nonfunctional requirements and incidents to further
develop a product.

Resulting capability:

A. Requirements and incidents gathering and prioritization
Action: functional and nonfunctional requirements and incidents are gathered
from and prioritized with internal stakeholders and external stakeholders (e.g.
customers).

The following capability also emerged from combining interview data (iv-2, iv-6,
iv-14, iv-9). This capability, however, shifts the focus to releasing at a fixed pace,
while validating software along the way on a development, test or demo environment,
among others, but not on a production environment. Resulting capability:

65

B. Fixed release heartbeat and validation
Action: a fixed release heartbeat is present and validation of functionality occurs
with internal stakeholders and external stakeholders (e.g. customers) by demoing
the functionality on a test or acceptance environment or the like.

The next capability was inspired by the eliminated product focus area and was thus
based on interview data (iv-5, iv-12, iv-8), which involved gathering requirements
and incidents from production environments. A quote of an interviewee shows the
relevance of monitoring production environment to attain better backlog manage-
ment.

“... you can use monitoring also for your product planning. Suppose that a module
is only used once a month, but turns out to be highly prioritized for further develop-
ment. . . [a question might then pop up] Why is it prioritized as such? you can then
use monitoring to better manage the backlog (iv-8).”

Resulting capability:

C. Production requirements and incident gathering
Action: functional and nonfunctional requirements and incidents are gathered
from production by monitoring the production environment(s).

Again, the following capability also originally arose from interview data (iv-15) and
concerned a more advanced way of releasing and validating software that suits a
DevOps way of working.

“Software is released in circles. So, we have a circle with internal teams, a circle
with a community that is close to our organization etc. We give functionality to
them and they give feedback before it is made available to the general public... While
releasing in such a way, functionality is already running in production [and is thus
validated in production] (iv-15).”

Resulting capability:

D. Gradual release and production validation
Action: functionality is released gradually (e.g. functionality is first released to
internal stakeholders, whereafter it is released to stakeholders that have close
bonds with the organization. Finally, the software is released to end-customers)
and validation of functionality occurs in production.

Capability E, known as experiments, was, however, not found in interview data, but
solely in literature (Guckenheimer, 2015; Olsson & Bosch, 2016). However, Guck-
enheimer (2015) described the same case where interviewdata (iv-15) was retrieved

65

from, which indicated that experiments were conducted in the interview case.

Resulting capability:

E. Feature experiments*
Action: experiments are run with slices of features in order to support the pri-
oritization of the contents in the backlog. Such experiments could, for instance,
be run by conducting A/B testing, where two different implementations of a slice
of functionality are set out to groups of customers in order to gather data and
determine what implementation is the best.

Last but not least and as with the final capability of the communication focus area,
the final capability from release heartbeat was formed after eliminating the continu-
ous improvement perspective with its corresponding focus areas and by following one
of the follow up validation sessions (f-v-2). Yet, capabilities from the initial process
and quality focus areas, which originated from Kim et al. (2016) and Trienekens
(2015), were maintained and formed input to the release heartbeat improvement
capability:

Resulting capability:

F. Release heartbeat improvement*
Action: the value stream is continuously improved by identifying and eliminating
activities that do not add any value, shortening lead times (i.e. the time that
starts when a change is checked “into version control and ends when that change
is successfully running in production, providing value to the customer and gen-
erating useful feedback and telemetry.” (Kim et al., 2016, p. 8)) and shortening
feedback loops such as the time between feedback moments with the customer.
A technique that could aid in the aforementioned is called value stream mapping.

Maturity order rationale
Capability A should at least be in place to be able to release software. After all,
requirements and incidents should be gathered and prioritized. After doing so capa-
bility B can be established by releasing and validating functionality at a consistent
pace. Next, capability C turned out not to be trivial from interview data, since only a
more mature case that was transferring to a DevOps situation acquired requirements
and incidents from production (iv-5). Hence, this capability was deemed to be more
mature than the previously mentioned ones, since these already occurred in non
DevOps situations. In an even more mature case capability D was followed (iv-15).
Here, a short fixed release heartbeat was maintained (e.g. sprints of three weeks)
and each sprint software was released gradually, while validation of functionality
occurred in production. In the same case, capability E was executed encompassing
the conduction of experimentation with ideas in production. This capability was
deemed more mature than capability D, since experimentation with functionality
takes a lot of effort in setting up a controlled experiment (Guckenheimer, 2015),

66

as conducting experiments require advanced infrastructure and monitoring mech-
anisms and a flexible business strategy (Fagerholm, Guinea, Mäenpää, & Münch,
2017). Capability F, however, forms the most mature capability and encompasses
continuously improving the value stream and aiming to constantly release faster and
dealing with feedback loops faster. Again, because this capability constantly aims
to shorten release heartbeats and amplify feedback loops, it concerns an ongoing
capability and is thus perceived as being most mature.

4.3.2.2 Branch and merge

The branch and merge focus area aims at branching and merging code that comes
from multiple developers and using techniques to make functionality available to
certain groups.

Branch and merge emerged by following workshop validation input (w-v-6), which
suggested to split the integrate and build focus area into two focus areas, as said
in the DevOps competence model section. It further became clear from follow up
validation session input (f-v-4) that is was better to move storing source code from
the configuration management focus area, which is outlined later on, to this focus
area.

Resulting capability:
A. Version controlled source code
Action: source code is stored under version control.

Further, observation of the earlier DevOps competence model from Centric (Van Vliet
& Jagroep, 2016) resulted in the addition of the following capability, which already
formed part of the integrate and build focus area initially, before the split.

Resulting capability:

B. Branching/merging strategy
Action: a branching/merging strategy is adhered to that allows multiple devel-
opers to collaborate and allows code to be branched and merged.

During the second validation round, one interviewee (iv-v-1) stated that one should
take into account the branching/merging strategy if one wants to deliver continu-
ously. Further, one expert (exp-v-2) explicitly remarked the addition of a capability
stressing a branching/merging strategy that suits DevOps and denoted that such a
strategy could entail developers committing code to a shared branch that is under
version control at once a day, which was also recognized by Fowler (2006) and also
forms one of the ingredients of continuous integration, which involves committing
to the mainline, automated build creation after each check-in and the automated
execution of unit tests for each check-in Humble & Farley, 2010.

67

“An extra capability should be made denoting the fact that developers commit to a
shared mainline at least once a day (exp-v-2).”

Resulting capability:

C. DevOps branching/merging strategy
Action: a branching/merging strategy is adhered to that is DevOps compatible.
An example of such a strategy is trunk based development, where developers
check-in to a shared mainline at least per day (also known as trunk based devel-
opment).

The next capability, namely feature toggles, originated from the workshop vali-
dation in which feature toggles were considered a higher level of branching and
merging.

“Suggestion: a higher level of branching and merging could be working with feature
flags [synonymous to feature toggles] (w-v-6).”

Resulting capability:

D. Feature toggles
Action: feature toggles are used to release functionality to customers by making
completed functionality, which is covered by a feature flag, available.

Maturity rationale
Capability A should be in place in order to achieve the more mature capabilities
belonging to this focus area (Phillips, Sillito, & Walker, 2011). One of these ca-
pabilities concerns capability B, which includes the adherence to a branching and
merging strategy, which requires source code to be stored in version control. Still,
capability C is more mature than adopting a regular branching/merging strategy
where development occurs on multiple branches that later on must be merged to
the mainline. The DevOps mindset, however, advocates developers to develop on
a shared branch, often called the mainline, and only make branches for releases to
prevent the problem of developing on too many separate branches that are difficult
to be integrated with the mainline later on (Olausson & Ehn, 2015). Capability D,
however, is the most mature capability in the branch and merge focus area for the
reason that feature toggles often go hand in hand with the earlier proposed gradual
release strategy and experimentation capabilities (iv-15), feature toggles are placed
as most mature.

68

4.3.2.3 Build automation

Build automation concerns automating the creation of a software build and is, aside
from branch and merge, the other focus area that arose after splitting the initial
integrate and build focus area.

While observing its capabilities, manual build creation arose from the workshop
validation (w-v-6).

Resulting capability:
A. Manual build creation
Action: a software build is created manually.

Automated build creation, however, was already adopted in the integrate and build
focus area and originated from interview data (iv-2; iv-4; iv-14).

Resulting capability:

B. Automated build creation
Action: a build is created automatically (e.g. by triggering a client, which, in
turn, creates the build automatically, or by running a scheduled build at night).

Lastly, continuous build creation (i.e. the automated creation of a build for each
check-in) was identified as a capability in literature(Humble & Farley, 2010) and
was also recognized as one of the ingredients of continuous integration.

Resulting capability:

C. Continuous build creation
Action: a CI build is created after each check-in to verify that the integrated code
still yields a working software build.

Maturity order rationale
Capability A stresses the most premature situation in regards to build creation,
which does not involve automation. Capability B is then formed by creating a
build automatically every certain moment or night, which ensures a faster and more
consistent creation of the software build that in turn results in the opportunity to
detect broken builds at an earlier stage. However, capability C is the most mature,
since this capability covers the continuous (i.e. after each check-in) creation of the
software build.

69

4.3.2.4 Development quality improvement

The development quality improvement focus area stresses that quality improvement
of software is already taken into account during the development of software.

Development quality improvement came into existence after processing the input of
a follow up validation session (f-1-v). As earlier mentioned, the initial continuous
improvement perspective with its focus areas were deleted, but certain capabilities
from these focus areas were preserved in other focus areas of which this focus area
forms part.

Following the aforementioned, literature (Van Vliet & Jagroep, 2016) and interview-
data (iv-2) that aided in making up the eliminated quality focus area, formed the
basis of the manual code quality monitoring capability. However, while carrying out
the second validation round, three interviewees (iv-v-3; iv-v-8; iv-v-1) made clear
that development guidelines had to be processed in this capability of which one
clearly denoted understandability of code to be playing a role in the adoption of
code conventions:

“Code conventions and adhering to these could be added [to this capability]. Under-
standability of code, for instance, has to do with code conventions (iv-8).”

Resulting capability:

A. Manual code quality monitoring
Action: manual code quality improvement mechanisms are in place such as pair
programming, code reviews and adherence to code conventions.

Next, broken build detection was already detected in the initial phase during in-
terviews (iv-6), where a dashboard visualized broken builds and developers were
triggered to almost immediately fix the broken build.

“We also have a dashboard that displays broken builds. The rule is that a broken
build is fixed within a day (iv-6)”

Resulting capability:

B. Broken build detection
Action: broken software builds are detected, made visual (e.g. on a dashboard)
and quickly repaired (e.g. within a day).

Contrary to the broken build detection capability being detected in interview data,
the gated check-in capability was identified on the basis of a follow up validation
session (f-1-v).

70

Resulting capability:

C. Gated check-in
Action: gated check-ins are performed before committing to a central repository
by merging changes made with the head of the master branch and carrying out
tests to see if the changes do not yield a broken build.

Automated code quality monitoring was, as manual code quality monitoring, ini-
tially detected in interview data (iv-5; iv-4; iv-6) and literature (Van Vliet & Jagroep,
2016).

Resulting capability:

D. Automated code quality monitoring
Action: code quality is monitored automatically. (e.g. by conducting automated
code reviews in SonarQube).

The final capability was then detected during the second validation round by one ex-
pert (exp-v-4), which was also recognized by (Campbell & Papapetrou, 2013).

Thereafter [after automated quality improvement], you can define quality gates in
sonarQube to set a measure, which defines the quality criteria with which code must
comply [in order to pass] (exp-v-4).

Resulting capability:
E. Quality gates
Action: quality gates are defined against which the quality of code is measured.

Maturity order rationale
Capability A covers simple tactics to be carried out in order to ensure high code
quality. Because these tactics were already found in a traditional setting (iv-1)
in the form of teams reviewing one another’s code, these tactics were part of the
least mature capability. The maturity of the remainder of the capabilities, however,
was led by one of the experts participating in the second validation round, who
was a specialist in development tooling. The quote below indicates his maturity
proposal.

“Gated check-ins [capability C], then, follows broken build detection [capability B].
After gated check-ins, we can look at our technical debt. So all information, which
is gathered during the [automated build] with respect to code coverage and code anal-
ysis comes in SonarQube [a tool that provides the ability to analyze and improve
code automatically] [capability D], where we can look if code quality really improves.
Thereafter [after automated code quality improvement], you can define quality gates
[capability E] in sonarQube to set a measure, which determines the quality criteria
with which code must comply [in order to pass] (exp-v-4).

71

4.3.2.5 Test automation

The focus of the test automation focus area covers the adoption of various tests
and automation thereof, throughout the chain, to ensure a high quality software
build.

Test automation was initially coined testing. However, since the focus area incorpo-
rated test automation, the name was also brought in line with the automation of tests
after processing workshop validation input. When further considering its capabili-
ties, test automation initially covered conducting unit, regression, chain, acceptance
and nonfunctional tests manually (capability A), semi automatically (capability B)
and fully automatically (capability C), where unit testing includes testing the com-
ponents of a program and regression testing involves testing if a piece of software
still performs correctly after changing another functionality. Further, acceptance
testing covers testing whether user requirements are met, integration (“chain”) test-
ing covers testing interfaces between applications and nonfunctional testing includes
testing non functionals such as performance, load and security, among others. How-
ever, as the maturity rationale belonging to this focus area shows, maturity was,
apart from the interview cases, determined by level of automation and the type of
test after processing first validation round input. When shifting the focus from the
focus area to its capabilities, two interviewees (iv-v-1;iv-v-12) and an expert (exp-
v-4) participating in the second validation round, indicated that the frequency of
testing was an aspect that should be adopted in the capabilities. As the expert
made clear:

“..So testing can occur manually, automatically and at a certain frequency (exp-v-
4)”

Further, the contents forming the first capability were made up using interview data
(iv-2), which showed that manual unit tests were performed systematically per sprint
and suggested that manual acceptance tests were performed each release.

Resulting capability:

A. Systematic testing
Action: manual unit and acceptance tests are performed systematically (e.g. per
release, per sprint).

Similar to regular testing, advanced testing, which formed the next capability, origi-
nated from interview data (iv-2; iv-7), where it became clear that manual regression
and integration tests were performed and that integration tests were performed each
release, but also from Sumrell (2007), who make clear that manual regression tests
could also be performed each sprint, which denotes that these tests could also be
performed systematically. Besides, during the second validation round, an intervie-
wee (iv-v-6) and expert (exp-v-2) suggested to remove test driven development, as

72

capability E, and recommended to process test driven development in capability B
during the second validation round:

“Parts of test driven development could be processed in capability B. A good pro-
grammer uses . . . a mocking framework, for instance (exp-v-2).“

Resulting capability:

B. Advanced systematic testing
Action: manual integration (“chain”) and regression tests are performed system-
atically (e.g. per release, per sprint) and test driven development practices are
used in testing such as the use of mocking frameworks and writing unit tests
before writing code.

As with the previous capabilities, the next capability was also formed by scruti-
nizing interview data (iv-5). However, this capability was extracted from interview
data, where a group developing a product, were in the midst of a DevOps transition
and had already implemented continuous integration, which indicated that auto-
mated unit tests were performed for each check-in (Humble & Farley, 2010). From
the interview data of this case, however, it became clear that automated unit and
performance (nonfunctional) tests were performed:

“On the test environment, automated unit tests are performed . . . There is one
automated performance test, which checks, for each check-in, the request time of a
landing page. If the request time comes above a certain amount of seconds, the test
gives feedback and a fix should be provided (iv-5).”

Resulting capability:

C. Automated systematic testing
Action: automated unit and nonfunctional tests are performed in a systematic
way (e.g. per release, per sprint, for each check-in).

For the construction of the following capability, literature was also used besides
interview data. Moreover, automated acceptance test were detected to be able to
be done after each check-in (Humble & Farley, 2010), and in the case of (iv-14),
automated regression tests were done after each check-in, automated integration
tests were done per sprint, and security scans (non functional test) were done after
each check-in.

Resulting capability:

D. Advanced automated systematic testing
Action: automated regression, integration (“chain”) and acceptance tests are
performed systematically (e.g. per release, per sprint, for each check-in).

73

As was earlier mentioned, the decision was made to process test driven development,
which first formed capability E, in capability B. As a replacement, an expert from
the second validation round (exp-v-3) suggested to replace test driven development
with resilience and recoverability testing, which is done by Netflix, who call this
phenomenon Chaos Monkey and was also recognized by Tseitlin (2013) and Faghri
et al. (2012). A quote from the interviewee is adopted below:

“Chaos monkey [a tool used by Netflix concerning automated recoverability and re-
silience testing] is connected to critical points in your infrastructure and then, at
a random time, it will shut it [a service] down. Doing so allows you to test the
recoverability of your process and the robustness of the application (exp-v-3).”

Resulting capability:

E. Automated recoverability and resilience testing*
Action: automated recoverability and resilience tests are randomly performed in
production.

Maturity order rationale
In the context of test automation, workshop validation input first suggested to also
determine maturity on the basis of the type of test, instead of only the extent the
tests are automated:

“There are two dimensions that determine maturity. These are the type of test and
to what extent they are automated (w-v-1).”

Workshop validation input further turned out that some tests were more difficult to
perform

“Chain and regression tests are more difficult to perform than the others (w-v-
4).”

With the above kept in mind, maturity was determined as follows. In a premature
interview case (iv-2), where DevOps was not implemented, it was perceived that
manual unit and acceptance tests were performed systematically per release, which
made these tests to be covered by capability A. Further, first validation round input
led to the decision to position regression and integration tests as more mature than
unit and acceptance tests, since these tests turned out to be harder to be performed.
Other than that, these manual tests were still perceived in cases that were not busy
transitioning to DevOps (iv-1; iv-7). Because of these tests being considered harder
to perform by workshop validation input and still came across in a non-DevOps
situation, the choice was made to process these tests in capability B.

Next, interview data (iv-5) of a case that was transitioning to DevOps, automated
unit and nonfunctional tests were performed systematically. Hence, because au-
tomation was involved in performing unit and non functional tests and these tests

74

were performed systematically a capability C was assembled. In a more mature
DevOps case (iv-14), regression and integration tests were performed automatically
and occurred after each check-in, while literature supported the fact that acceptance
tests could occur automatically after each check-in. Since, all of these tests were
found to be able to occur automatically and in a highly systematic fashion, they were
packaged in capability D. Capability E, however, encapsulated automated recover-
ability and resilience testing, which turns out to be executed only by organizations
that have the right managerial discipline, engineering resources and operational ex-
pertise in place (Faghri et al., 2012). Because of the aforementioned together with
expert advice to position this capability as the most mature capability, this type of
test ended up being the most mature test automation capability.

4.3.2.6 Deployment automation

The deployment automation focus area concerns automating deployments of soft-
ware builds and rollbacks of these software builds in order to transfer software builds
to development, testing, acceptance and production environments in a fast manner
and rollback deployments in a fast manner. Note that especially the acceptance and
production environments could either be located at the datacenter of the SPO itself
or at a different location (e.g. at the site of the customer).

Deployment automation as a focus area was firstly coined provisioning and deploy-
ment. However during the second validation round, an interviewee (iv-v-1) and
three experts (exp-v-2; exp-v-4; exp-v-5) remarked the relation between infrastruc-
ture and provisioning, where one of the experts explicitly denoted the relationship
between infrastructure and provisioning, and denoted that it was better to move the
provisioning part to infrastructure:

“You could transfer provisioning to infrastructure, since a deployment can occur on
the same virtual machine [that is already provided with a compatible configuration],
which makes that this virtual machine does not need to be provisioned again [for
deployment to occur] (exp-v-5).”

Shifting the focus from the focus area in general to its capabilities, manual deploy-
ment to environments was detected in interview data (iv-10; iv-1) and in an internal
document (Vulpe, 2015) corresponding to an interview case (iv-6). The quote below
from an interviewee shows how manual deployment occurs:

“In the case of on-premise software, the software is packaged and then installed on
an environment by ourselves (iv-10).”

While additions affecting all capabilities arose from the workshop:

“During rollback, data should be reversed to a stable state as well (w-v-4).”

75

“Datamodel changes must also take place automatically, for automated deployment
(w-v-3).”

and from a follow up validation session (f-v-4) stating that a difference should be
made in manually and automatically rolling back a deployment.

Resulting capability:

A. Manual deployment
Action: software is deployed to environments (e.g. development, test, acceptance,
production environments) in a manual fashion. I.e. by installing a release package
on an environment. In addition, rollback is possible, where data is brought back
to a stable state.

Scrutinizing the second capability, it is worth mentioning that this capability also
arose from interview data (iv-2).

Eventually, it [the software build] needs to be transferred from a development to a
test environment. For this to happen, we have set up an automated process, which
takes care of updating the test environment several times a day (iv-2).”

Resulting capability:

B. Partly automated deployment
Action: software is deployed automatically to some environments. E.g. a software
build is transferred from a development to a test environment automatically and
rollback is possible, where data is brought back to a stable state.

Continuous delivery, as a capability, was initially seen as capability E and was men-
tioned during interviews (iv-5, iv-7) and by Fowler (2013). However, workshop vali-
dation input (w-v-4) suggested to integrate continuous delivery with fully automated
deployment to all environments, which initially represented capability C. Also, Hum-
ble, Molesky, and O’Reilly (2014) confirmed that this was a better decision, as they
see continuous delivery not as a phenomenon entailing direct transferring of a build
to an acceptance environment after passing all automated tests. Rather, continu-
ous delivery involves self service deployments to test and production environments,
where manual testing could still occur.

Resulting capability:

C. Continuous delivery
Action: deployment to all environments occurs in an automated manner (e.g. via
self service deployments), where data model changes are also processed automat-
ically and rollback is possible, where data is brought back to a stable state.

76

The final capability, namely continuous deployment, arose from literature (Rah-
man, Helms, Williams, & Parnin, 2015). Anderson, Kenyon, Hollis, Edwards, and
Reid (2014) also showed that automated rollbacks can be found in situations where
continuous deployment is implemented.

Resulting capability:

D. Continuous deployment*
Action: each check-in is continuously deployed to production, where data model
changes are also processed and automated rollback is possible, where data is also
brought back to a stable state.

Maturity order rationale
Traditionally, it was found that all environments are deployed to and rolled back
from manually in a SPO. As a consequence, capability A was composed of the afore-
mentioned. Next, in a less mature interview case (iv-2), it was found that capability
B was present. For the reason that partly automated deployment was reflected in
this capability, partly automated deployment was seen as more mature than per-
forming deployments by hand. A more mature situation that was detected concerned
capability C. Here, deployments to all environments (i.e. from development up to
and including production) are executed automatically via a self service mechanism,
which denotes a more mature situation than solely being able to automatically de-
ploy to a number of environments. Continuous delivery, however, was also observed
in an internal document belonging to one of the more mature interview cases (iv-
6). Finally, the most mature situation is formed by capability D. In this situation,
each change flows directly into production after passing all automated tests. This,
however, requires all tests to be automated to a very mature extent (Humble & Far-
ley, 2010). Further, automated rollbacks can be present in such a situation, which
denotes a more mature situation than performing rollbacks manually.

4.3.2.7 Release for production

Release for production covers definitions with checks to be performed in order to
declare software to be done and to be confident that software is of high quality.
The focus area further concerns the automated generation of supporting materials
belonging to a release.

This focus area was formed out of the initial definition of done focus area, which
belonged to the product management related focus areas. The emergence of release
for production, however, was the result of following input from one of the follow
up validation sessions, which stated that the “definition of done” focus area was
still too development oriented and therefore its capabilities should be tailored more
towards matters involved in releasing (f-v-2).

77

Hence, when looking at the capabilities, a first capability concerned the definition
of release including the definition of done, but also the creation of release matters
such as release materials,training documentation and a verification step that checks
whether software works in production. Second validation round input, however,
suggested that capability A was set up too broadly and, for this reason, one expert
(exp-v-4) and two interviewees (iv-v-8; iv-v-6) opted for splitting capability A in a
capability covering development and test criteria (i.e. definition of done) to be met
for a sprint and a capability covering release criteria (i.e. definition of release) to be
met for a release in order to be sure that software could be deployed to production,
quality is maintained via quality checks, and release matters are arranged before
releasing software to the customer.

“So [capability] A could be, we are done after a sprint, [capability] B could concern
we are done when it is deployed to production. . . (exp-v-4).”

“In general, another capability should be defined in front of the current A. One that
only concerns dev [and test] matters that should be arranged ... Moreover, two years
ago, we had our builds running, did our tests, and matters were agreed upon with
support [operations] , but not formally checked off. Now, there is alignment with
operations and for each release we check whether the hardware compliance list is up
to date, the list of ports to use software is up to date and whether the system concept
documentation that complies with our software is up to date (iv-v-6).”

Resulting capability:

A. Definition of done
Action: a definition of done that incorporates development and testing criteria,
among others to be complied with during a sprint, is followed.

For the definition of release also extra input was gained from two interviewees (iv-
v-2;iv-v-8) during the second validation round:

“So [capability B] could concern informing support [about the release], training users,
and making up a document that shows the changes pertained to the release [release
documentation] (iv-v-8).”

Resulting capability:

B. Definition of release
Action: a definition of release that incorporates operations criteria to be complied
with before releasing to customers, is followed. Criteria in such a definition could
cover, among others, updating system documentation that is compatible with the
software, training documentation, release documentation, and verifying whether
the software works in production.

78

Moreover, during the second validation round, one interviewee (iv-v-12) and one
expert (exp-v-4) addressed the adoption of a third capability including functionality
to be declared done once customer satisfaction is reached:

“... an extra capability could involve whether the functionality is according to users’
wishes. That is a very different phenomenon [as opposed to declaring a feature done
after it complied with dev and test criteria and is proven to work in production],
since you can then deploy a feature, obtain feedback from the user, and only if the
user is satisfied, the feature can be declared to be done. So, it might well be the
case that it takes three sprints to work towards a feature, which complies with users’
wishes (exp-v-4).”

Resulting capability:

C. Done according to customer*
Action: functionality is declared done when customer satisfaction has been
reached. In this case, functionality is released to customers, feedback is obtained
from production, and only if customers are satisfied with the functionality, the
functionality is declared to be done.

Finally, automated material generation was seen as a relevant capability during a
follow up validation session (f-v-2).

Resulting capability:

D. Automated material generation*
Action: supporting materials such as release documentation, training documen-
tation etc. are automatically generated.

Maturity order rationale
Capability A incorporates criteria up to test that should be complied with in order
for software to be declared done. Up to test, however, indicates that no criteria is
taken into account that declares software to be done once it works in production,
which indicates that software is discerned to be done once developed and tested, by
not taking into account whether software works in production and whether release
matters are up to date. A more mature situation is thus reflected in capability B,
which stretches the standard definition of done to production and operations, mean-
ing that software is declared done once it works in production and all supporting
matters are arranged. However, capability C stretches the definition even further
and declares software to be done once it leverages value to the customer. In this
sense, software is thus declared done once it is tested, works in production and lever-
ages value to the customer. The last capability, namely capability D, concerns the
automated generation of supporting materials and is the most mature capability, be-
cause three second validation round interviewees (iv-v-12; iv-v-6; iv-v-8) suggested
to order this capability as the most mature one.

79

4.3.2.8 Incident handling

Incident handling is concerned with maintaining product quality when a product
runs in production, meaning that incidents and root causes thereof should be acted
upon and fixed by interdisciplinary professionals.

Initially, the incident handling focus area was called product quality improvement
and inherited capabilities from the eliminated product focus area that resided in the
eliminated continuous improvement perspective. However, a finding from one inter-
viewee (iv-v-1) during the second validation round that was supported by Berner,
Weber, and Keller (2005), suggested to rename this focus area to incident han-
dling.

“Product quality is rather confusing, since test automation also falls under this do-
main (iv-v-1).”

When shifting the focus to the focus area its capabilities, the first capability was
initially present and detected in interview data (iv-2) and literature (Van Vliet &
Jagroep, 2016).

Resulting capability:

A. Reactive incident handling
Action: incidents are logged and acted upon by interdisciplinary professionals,
among which are dev and ops professionals (e.g. support could, for instance, log
a third-line incident, after which development acts as third line support and fix
this incident).

The next capability concerns proactive incident handling and was inspired by initial
interview data (iv-9, iv-6, iv-15), as the following quote makes clear.

“We monitor the software itself ... We use queues for communicating data. Some-
times messages stay in those queues because something goes wrong . . . then support
calls the customer if a problem is to occur and development start searching for a
solution (iv-6).”

Resulting capability:

B. Proactive incident handling
Action: incidents are proactively acted upon by interdisciplinary professionals,
among which are dev and ops professionals (e.g. support contacts the customer
to inform the customer about an upcoming incident, and development starts to
solve the incident before the customer is affected).

Blameless postmortems, on the other hand, arose after the second round validation

80

from one expert (exp-v-2) and was suggested to represent capability C.

“You could change capability C to analytics based monitoring (analytics that un-
derlie monitoring) and represent this capability as a capability D and I would then
describe capability C in the context of root cause investigation and postmortems
(exp-v-2).”

These blameless postmortems were also recognized by Lwakatare et al. (2016) and
concern remediating to root cause after a major incident has taken place by consid-
ering all actions involved that could have caused the incident without blaming one
another.

Resulting capability:

C. Blameless root cause detection*
Action: root causes are identified without blaming one another by conducting
blameless postmortems involving both development and operations.

Lastly, root cause monitoring was detected as a capability by scrutinizing literature
from Guckenheimer (2015) and involved using analytics to support the detection of
root causes of incidents to prevent these from recurring. However, during the second
validation round two of the experts (exp-v-2; exp-v-4) suggested to make the use of
analytics more clear in this capability. As one of the experts stated:

“You could tailor [root cause monitoring] more to analytics based monitoring, which
better reflects that analytics underlie monitoring (exp-v-2).”

Resulting capability:

D. Automated root cause detection*
Action: the identification of root causes of incidents is supported by analytics
(e.g. analytics are used to detect that memory and performance incidents are the
result of a code defect, which then forms the root cause).

Interestingly, it became clear that in the interview case of (iv-15) analytics based
monitoring was used to find suspect root causes of incidents, which were then dis-
cussed in a postmortem, after which follow up actions were adopted in the backlog
as shown by Guckenheimer (2017).

Maturity order rationale
Capability A was found to occur in traditional settings, where it was found that
incidents coming from affected customers are logged and fixed via a incident man-
agement procedure in a SPO (iv-2). These incidents are then either fixed by oper-
ations or development. Capability B, however, involves monitoring and proactive
incident handling by development and operations indicating that this capability ad-

81

vocates to resolve incidents before the customer notices the incident. This form
of incident handling was also identified in a mature DevOps interview case (iv-6).
Next to resolving incidents pro actively, root causes of incidents should ideally be
blamelessly identified and involve dev and ops in order to prevent incidents from
recurring, as represented in capability C. Since remediating to root cause in this way
is a characteristic of an organization that already matured in DevOps and was found
in a highly mature DevOps interview case (iv-15) that was also represented in the
work from Guckenheimer (2017), this capability forms a higher maturity capability
as opposed to the aforementioned capabilities. Finally, capability D stipulates that
the identification of root causes could be aided by monitoring as well. However, the
adoption of such monitoring is proven to be challenging (Ravichandran et al., 2016)
and is therefore positioned as the most mature capability.

4.3.3 Foundation

Previous results showed that the bottom part of the DevOps competence model
was formed by the foundation perspective, which encompassed three focus areas,
known as configuration management, architecture and infrastructure, as shown in
Figure 4.5.

Foundation

Configuration management

Architecture alignment

Infrastructure

Figure 4.5: The foundation perspective

4.3.3.1 Configuration management

The configuration management focus area concerns the management of applica-
tion and infrastructure configurations, consisting of supporting configurations items
(e.g. OS configurations, software configurations, middleware, database version etc.),
which is needed to keep track of configuration changes and keep software sup-
ported.

In the first place, capability A of configuration management was covered by having
source code stored in revision control and supporting configuration items such as
the OS version etc. in documents (Van Vliet & Jagroep, 2016; Larsson & Crnkovic,
1999;iv-7;iv-12). Yet, one of the follow up validation sessions (f-v-4) suggested to

82

transfer version controlled source code to the branch and merge focus area, as shown
earlier. As a result, manual managing supporting configurations remained in capa-
bility A.

Resulting capability:

A. Manual configuration management
Action: Supported versions of configuration items (e.g. OS, middleware,
databases etc.) and their relationships are managed manually, for instance in
documents or excel sheets.

The next capability originated from the same follow up validation session that opted
for transferring the storage of source code under revision control to branch and merge
(f-v-4). Apart from that, the proposed capability was also recognized by an inter-
nal document in which a configuration management tool was explained (Bassano,
2016).

Resulting capability:

B. Automated configuration management
Action: Supported versions of configuration times and their relationships are
managed in a configuration management tool.

Finally, version controlled configuration management was recognized by Steinberg
(2016) and by interview data (iv-15; iv-9) and initially, before the first validation
rounds, formed capability B with the inclusion of source code being stored in version
control.

Resulting capability:

C. Version controlled configuration management
Action: Supported versions of the configuration items and their relationships are
managed in version control.

Maturity order rationale
In capability A configuration items are stored and managed in documents. Since
this happens by hand, many mistakes can still be made, which could yield incorrect
configurations that are not compatible with certain software. Capability B there-
fore entails storing configuration items in a tool, which allows for the automated
generation of the needed configuration files without the need for editing these by
hand as recognized by Bassano (2016). Capability C, however, not only includes
storing configuration items by means of tooling, but also stresses the fact to store
configuration items under revision control, which is more mature than the previ-
ous capability as storing configuration items in such a way enables easy tracking

83

of changes and is also advocated to be done in a continuous delivery setting in the
sense that if configuration items are stored in version control, environments can be
quickly provisioned after which fast deployment to the provisioned environment can
occur (Steinberg, 2016).

4.3.3.2 Architecture alignment

The architecture alignment focus area focuses on the alignment of the structure of
software and infrastructure. As a consequence, the software architecture is the archi-
tecture of the system under design, development or refinement, while the technical
architecture relates to the structure of the deployment infrastructure (Berner et al.,
2014).

At first, capability A of architecture was formed by literature, which entailed hav-
ing architecture descriptions in place (Van Vliet & Jagroep, 2016). However, first
validation round input from the follow up validation sessions suggested to aim ca-
pability A at alignment of the software and technical architecture at application
level (f-v-4), which also triggered earlier interview data stating the fact that this
alignment should take place before each release (iv-9) to be processed in the revised
capability A. A quote from the interviewee underpins the importance of aligning
architectures before a release.

“Before the release, architecture changes must be discussed with the business unit.
So we [technical architects] should be involved early in the process (iv-9).”

Further and as stated previously, the use of shared and third party components were
processed in the capability as the workshop validation caused the shared component
and third party component focus areas to be deleted.

Resulting capability:

A. Software and technical architecture alignment
Action: the software architecture of an application (a description including used
shared/3rd party or own components and interfaces between them) is aligned
with a technical architecture (a description including including own or 3rd party
frameworks) before a release.

When looking at capability B, this up following capability was initially formed by
interview data (iv-10) and included the alignment of a software architecture with a
standardized technical architecture. However, second validation round input made
clear that capability B was formulated too restrictively for a DevOps context, as
stated by two experts (exp-v-4; exp-v-5) and one interviewee (iv-v-8). As one of the
experts remarked, freedom in architecture fosters agility and architecture should
thus not be coordinated centrally:

84

“I believe that if you have good DevOps organization, you are free to form your
own architecture. If you look at Netflix and Amazon, these organizations must be
capable of adopting the newest technical architecture. In these cases, architectural
adaptations are ... not centrally coordinated (exp-v-4).”

After processing this input it became clear that capability B in the state of being
aligned with an architecture, and not a standardized one, became redundant, as it
now bore the same contents as capability A. In addition, a capability C also existed
initially, which came from Van Vliet and Jagroep (2016) and interview data (iv-8;
iv-12; iv-3, iv-6; iv-5), and incorporated the use of a service oriented architecture.
However, first validation round input suggested that mentioning an architectural
pattern was out of place and mentioning a continuous evolvement of both architec-
ture types was found more relevant:

“I would not mention an architectural pattern [service oriented architecture] here. . .
The focus of capability C should encompass the dynamic aspect of an evolving ar-
chitecture... A continuous integration of the dev and ops architecture. (w-v-6; w-v-
1).”

On the basis of this input earlier interview data was consulted, since other interview
data from (iv-10) suggested to evolve both architecture types in a controlled fashion
under supervision of a governance board. After processing the first validation round
input together with earlier interview data, capability C encompassed the mutual
evolvement of the standardized technical architecture with the aligned software ar-
chitectures in a controlled fashion. However, the second validation round input on
capability B also impacted capability C, since capability C also included the stan-
dardized technical architecture. Besides, second validation round input (exp-v-2)
also stressed capability C to be formulated too top down. As a result, the term
standardized technical architecture was removed and was replaced by technical ar-
chitecture.

All in all, the decision was made to delete capability B, which mimicked capability
A, and preserve capability C including continuous evolvement as capability B. This
was also suggested by an interviewee (iv-v-8) in the second validation round, as the
quote below makes clear.

“You could preserve capability A and capability C [as capability B] and remove ‘stan-
dardized’ from the technical architecture (iv-v-8).”

Resulting capability:

B. Continuous architecture evolvement
Action: the software and technical architecture evolve mutually in a continuous
fashion in such a way that these architectures are continuously aligned and kept
up to date.

85

Maturity order rationale
Capability A puts the emphasis on aligning software and technical architecture de-
scriptions in order to be sure that the software and technical architecture are in
agreement with one another before a release. Capability B, on the other hand,
stresses continuous alignment and presents a situation in which the software and
technical architecture are not only aligned before each release, but continuously
evolve together in a mutual fashion ensuring that both types of architecture are al-
ways up to date. This reflects a more mature situation than aligning the architecture
only at some point before a release.

4.3.3.3 Infrastructure

The infrastructure focus area concentrates on the infrastructure that is required
to develop, test, accept and run software in production and provisioning of these
environments to provide these with the configuration items that are compatible with
the software that is meant to be deployed to and run on these environments.

In the first place, the first capability concerned having available all infrastructure
(i.e. from development up to and including production) and making available this
infrastructure for development, testing and production running purposes, which was
formed by Van Vliet and Jagroep (2016) and interview data (iv-13; iv-6; iv-5). Yet,
second validation round input suggested to move the provisioning part from provi-
sioning and deployment to this focus area, as earlier mentioned. Thus, capability A
was complemented with the manual provisioning of these environments, which is also
recognized by Hüttermann (2012), who states that all these environments are provi-
sioned manually in traditional organizations by walking through documents.

Resulting capability:

A. Manually provisioned infrastructure
Action: infrastructure such as development, test, acceptance and production in-
frastructure is available and provisioned manually (e.g. by walking through a
manual and provision an environment by hand).

The second capability was initially represented by having infrastructure between de-
velopment and production in place that is as equal as possible so that development
and testing environments are more equal to acceptance and production environ-
ments, as suggested by Hüttermann (2012) and interview data (iv-6; iv-13; iv-5), as
the quote below suggests.

“People from internal IT build these systems [development and testing environ-
ments], while our operations people build these systems [acceptance and production]
and currently our development environments are way different from our production
environments. Hence, these environments must converge (iv-13).”

86

More specifically interview data (iv-6) showed that one way of maintaining equiva-
lent infrastructure is achieved by using equivalent hardware:

“...Q/A [test] has an environment with as many machines as in production to test
with. These machines only have less cpu power and memory. . . our load testing
environment, however, represents production in terms of hardware (iv-6).”

Whereas second validation round input (iv-v-12) also stressed that environments
should be equal when it comes to configuration.

“... your development and test environment must then have the same configuration
regarding versions and test must, in turn, be the same as production. Patch levels
and the like should thus be equal (iv-v-12).”

As for keeping environments consistent with regard to configuration, often auto-
mated provisioning comes into play that involves pushing declarative configurations
to environments (Nelson-Smith, 2013).

Resulting capability:

B. Automatically provisioned infrastructure
Action: infrastructure between development and production is equivalent in terms
of configuration and hardware and provisioned automatically (e.g. by pushing a
declarative configuration (i.e. a reproducible configuration in code to a virtual
machine that represents an environment)).

Further, workshop input (w-v-3) suggested to add a capability C, as the quote from
the workshop validation session shows:

“... a next step could be that you not only provide infrastructure, but also a basis
with generic functionality such as file services, network services. This way, base
functionality of the infrastructure can be seen as a platform (w-v-3).”

This base functionality on top of the infrastructure is also known as platform as
a service. Moreover, after adding the capability above, two interviewees (iv-v-12;
iv-v-9) from the second validation round suggested the inclusion of rights and rolls
in capability C in order to touch upon the importance of the degrees of freedom one
has with regard to modifying an environment. The technical architect gave a clear
description of these rights and rolls with regard to platform as a service.

“The end-to-end process depends on PaaS . . . Take, for instance, Azure pack.
You can rollout servers on that ... This is done per environment, so for test, ac-
ceptance and production and for each environment there is governance [as to what
can be configured on each environment] that decides what rights one [a developer]
has. For example, for that environment you have these rights [as to configure the
environment], but on the other you can only perform deployments (iv-v-9).”

87

While (iv-v-12) gave extra input for capability C:

“The difference between [capability] B and [capability] C is that on the part of de-
velopment no possibility exists anymore to adapt the configuration themselves. And
that is an addition to [capability] C. Now, in practice, I see that dev people are still
adapting patch levels of an operating system. . . So [in capability C, for instance],
you have a database server, a webserver that are included in the platform, while in
[capability B], these can still be configured by development (iv-v-12).

As for the provisioning shift, one of the experts participating in the second val-
idation round (exp-v-5) denoted that provisioning is already included in such a
platform.

Resulting capability:

C. Managed platform services
Action: platform services (such as a web server and a database server) are precon-
figured in the platform and allow for applications being directly deployed, among
others, while rights and rolls are managed per environment. This is also known
as platform as a service.

Maturity order rationale
Capability A shows a traditional situation, where environments are provided with
the configuration that works with certain software manually by, for instance, walk-
ing through manuals that are open to multiple interpretations, as recognized by
Vulpe (2015), who describe the history of the case of iv-6 and recognize that manual
provisioning exists together with inequivalent environments. Capability B deviates
from the traditional setting and addresses automated provisioning of environments
by using scripts to install configurations or by pushing declarative configurations
to environments which results in a more consistent way of provisioning environ-
ments and keeping environments equivalent in regards to their configuration and
hardware. The most mature situation, however, is formed by capability C. Here a
standardized platform is delivered by operations that already includes pre configured
environments, which are already provided with a correct web and database server,
for instance. The developer does then not have to configure the environment (e.g.
by installing a correct version of a database server) in order to deploy an application.
Instead, this is managed by an operations party.

4.4 Maturity model

This section elaborates on the maturity model that was constructed during the
research. In total, three versions of the maturity model were made, namely an
initial version, an improved version and finally a final version.

88

4.4.1 The initial and improved maturity model

As with the DevOps competence model, the perspectives, focus areas and capabil-
ities presented previously also formed input to the maturity model. However, the
content of the initial maturity model is based on the capabilities after processing
first validation round input, which encompassed the workshop validation and the
follow up validation sessions and can be found in Figure 4.6. The maturity model
can be read as follows. The least mature capabilities reside in level one, while the
most mature capabilities reside in level eight. Some focus areas have a set of ca-
pabilities that start at a later moment. This indicates that these capabilities came
across in more mature situations than other capabilities starting of from a lower
maturity level.

Focus area \ Level 0 1 2 3 4 5 6 7 8

Communication A B C D
Knowledge sharing A B C D
Trust and respect A B C
Team organization A B C
Alignment A B

Release heartbeat A B C D E F

Branch and merge A B C

Build automation A B C

Development quality improvement A B C D

Test automation A B C D E

Release for production A B

Product quality improvement A B C

Provisioning and deployment A B C D

Configuration management A B C

Architecture A B C

Infrastructure A B C

Culture and collaboration

Product, Process and Quality

Foundation

Figure 4.6: Initial DevOps maturity model

89

The model shown above was improved after processing the input from the second
validation round. The resulting model that emerged from processing this input is
shown in Figure 4.7.

Focus area \ Level 0 1 2 3 4 5 6 7 8

Communication A B C D E
Knowledge sharing A B C D

Trust and respect A B C
Team organization A B C D
Release alignment A B C

Release heartbeat A B C D E F

Branch and merge A B C D

Build automation A B C

Development quality improvement A B C D E

Test automation A B C D E

Deployment automation A B C D

Release for production A B C D

Incident handling A B C D

Configuration management A B C

Architecture alignment A B

Infrastructure A B C

Culture and collaboration

Product, Process and Quality

Foundation

Figure 4.7: The improved DevOps maturity model

Both the initial and the improved maturity model comprise eight maturity levels,
which present a growth path towards a mature DevOps situation. This amount
of levels emerged after positioning the capabilities on the basis of interview data,
assessment data, internal documents, and literature. Moreover, as was already no-
ticeable in the results section of the perspectives, focus areas and capabilities, some
interview cases were more mature in their DevOps adoption than others. This fact
was used in the construction of the maturity levels of the maturity model. As such,
some interview cases (iv-1; iv-2) still resided in a non-DevOps world, which, to-
gether with their corresponding earlier assessment data (Centric, 2016c; Centric,
2016a) and literature, largely shaped the positioning of the capabilities in level one
and two. Other two interview cases (iv-3; iv-7) related to the same situation and
were mainly used, together with earlier assessment data corresponding to this situ-
ation (Centric, 2016b), to shape level three. From the perspective, focus area and
capabilities results, it also became apparent that a group was busy transitioning to
a DevOps way of working. Hence, the interview case belonging to that situation
(iv-5) contributed the most to the positioning in level four, while supporting inter-
view data from (iv-9) also provided input for the positioning of capabilities in level
four. Moving forward to level five, a first encountered interview case (iv-6) where
DevOps was embraced to an already mature extent gave most of the input to level
five. Yet, other interview cases (iv-3; iv-10) also contributed to the establishment
of the capability positioning in this level. The subsequent level, namely level six,
was partly formed by scrutinizing input from the case determining most of the po-
sitioning in level five, while most of level six its positioning can be traced back to
interview data (iv-15) and corresponding literature from Guckenheimer (2015) and
Guckenheimer (2017) from a case where DevOps was adopted to a mature extent
in a large enterprise and by scrutinizing input from another case that matured in

90

DevOps (iv-14). Further, the positioning of the capabilities in level seven was partly
led by interview data (iv-12; iv-13), but mainly by literature. Finally, level eight was
made up of the capabilities in which ongoingness and continuous improvement was
inherent. However, albeit the amount of maturity levels in the initial and improved
version of the maturity model remained the same, second validation round input
caused certain capabilities to be added and repositioned. The remainder of this sec-
tion further details on the construction of the maturity model in terms of its focus
areas and also describes how second validation round input led to the repositioning
of certain capabilities.

4.4.1.1 Focus areas

Communication

The first level of communication originated from second validation round input,
where all experts agreed on adding a capability stressing indirect communication.
Only one of these experts (exp-v-3), however, noticed to position this capability
in level one, while two other experts suggested this capability to be positioned in
the range of level one and level three. The next capability of communication was
positioned in level four, as in the situation, where people were moving to a DevOps
situation, a first form of direct communication between interdisciplinary profession-
als among which are development and operations, became visible, while in level five
also facilitated communication among interdisciplinary professionals became visi-
ble. However, as suggested in the perspectives, focus areas and capabilities results
section, a shift in maturity was made with regard to facilitated and direct com-
munication. However, this shift did not impact the positioning as it was found
that direct communication in the case, where a shift was made to DevOps was also
stimulated by management at first as shown by (iv-13). Then level seven was filled
by the governance model in the first maturity model, since this capability was not
detected in any of the preceding cases providing input to the positioning of other
maturity levels, but has an enterprise-wide impact, as managers can use the model
to declare communication lines, among others. However, after processing second
validation round input, the governance model capability was formulated less restric-
tively, which resulted in the capability to be called structured communication. This,
however, had no impact on the capability its position. Lastly, communication im-
provement purely aimed at continuous improvement and was therefore positioned
in the last level.

Knowledge sharing

Knowledge sharing was complemented with an extra capability, namely decentral-
ized knowledge sharing that was advised to be added by two of the experts during
the second validation round. Again only one of these experts was able to denote a
concrete position for this capability, which concerned level three, while the other ex-
pert suggested the capability to be positioned between level one and three. Further

91

observing knowledge sharing, the next capability, centralized knowledge sharing, was
positioned in level four. Still, when looked at knowledge sharing, real examples of
centralized knowledge sharing facilities to support knowledge sharing among inter-
disciplinary professionals was not perceived in the case transitioning to DevOps or
in any other cases that gave input to the less mature levels. Still, active knowledge
sharing was apparent in the interview case that gave input to level five. Hence,
this capability was positioned in level five. For this reason and because of the fact
that facilitated communication was present in level four, the assumption was made
that centralized knowledge sharing was positioned correctly under level four. The
next capability of knowledge sharing concerned communities of practice, which was
positioned in level seven in the first version of the maturity model. The rationale for
placing the capability so far to the right in the maturity model is underpinned by
Roberts (2006), who state that communities of practice are often difficult to create
and sustain communities of practice in fast changing business environments. Also,
communities of practice were not observed in any of the previous interview cases
having an impact on the positioning in the preceding levels. However, since the
knowledge sharing policy, which was first positioned in level eight, was seen as a
redundant capability by two second validation round experts as it could be replaced
with communities of practice complemented by the reasoning that these could also
foster continuous knowledge sharing improvement, communities of practice was ul-
timately adopted in level eight, as suggested by experts (exp-v-2; exp-v-3). The
following quote addresses the aforementioned:

“... [capability] C takes the place of [capability] D [knowledge sharing policy] (exp-
v-2).”

Trust and respect

In the first place, the first capability of trust and respect was positioned in level three
in the initial maturity model, since this capability was not seen in earlier cases, but
was reflected in an interview case contributing to the positioning of the capabilities
in level three, where people were already working on technological improvement (i.e.
learning web based techniques such as javascript) to transfer to a newer situation,
where delivering software as a service (SaaS) was aimed for and thus showed the
presence of the first capability of trust and respect, which addresses that time is made
available for development to improve. However, as already stated, this capability
was reformulated, which had impact on its positioning. As a result, the capability
was positioned in level four, since the reformulated capability better suited the
situation of the case that was transitioning to a DevOps situation. The subsequent
capability, namely the creation of trust and respect, however, was found in the
interview case contributing to the emergence of level five. As previously mentioned,
this capability was reformulated to a less restrictive capability by processing second
validation round input. However, the position was not affected by this. Lastly,
shared core values were already seen in the aforementioned case, as transparency
was mentioned as a means to maintain trust and respect. Yet, for the reason that
maintaining a culture of trust and respect comes after the creation of such a culture,
maintaining a culture of trust and respect was positioned in level six.

92

Team organization

The first capability with regard to team organization concerned cross functional
teams excluding ops in the first version of the maturity model. However, earlier
results showed that a new capability was added due to the execution of the second
validation round. This capability took the position of cross functional teams exclud-
ing ops and caused cross functional teams excluding ops to be positioned in level
two. Moreover, two experts from the second validation round (exp-v-4; exp-v-5),
opted for level one as a suitable position, while cross functional teams excluding ops
was positioned in level two after considering the position proposals from the experts.
A quote below shows the need for shifting the capabilities:

“... So the new capability A [separate teams] can be positioned in level one and the
current capability A [cross functional teams excluding ops], which becomes B, can be
positioned in level two (exp-v-5).”

The next capability was positioned in level six, since the case of (iv-15) showed the
presence of cross functional teams including operations. The last capability of team
organization, i.e. cross functional teams with knowledge overlap, was placed in level
seven. As became clear from (iv-12), an ideal DevOps team should consist of profes-
sionals that have boundary crossing knowledge. In other words, these professionals
are “T shaped”. However, literature also relates these so-called T-shaped profession-
als to communities of practice in order to foster organizational knowledge sharing
(Barile, Franco, Nota, & Saviano, 2012). Hence, in the initial maturity model this
capability was first positioned in line with communities of practice in level seven.
Other support for placing T-shaped professionals so far to the right is given by Kim
et al. (2016), who state that professionals already residing in the organization should
be turned into T-shaped professionals to overcome siloization. Naturally, this will
take effort, time and costs money since an organization must invest in its employees
in order to transform normal professionals to T-shaped professionals. Also, none of
the cases providing input to the positioning of the capabilities from level one up to
and including level six showed the presence of such people in teams that included
operations personnel.

Release alignment

In one of the interview cases providing input to the positioning of level three (iv-3),
a need for the alignment of shared components at a strategic level became visible,
which caused the first capability of alignment, namely roadmap alignment, to be
positioned in level three. However, the next capability, namely release heartbeat
alignment, was found in one of the interview cases (iv-15) determining the position-
ing of level six, since there the common release cadence was detected. Hence, this
second capability was positioned in this level. Yet, as earlier shown, a new capabil-
ity C was added after processing second validation round input and concerned the
release heartbeat alignment with dependent third parties for which three experts
(exp-v-2; exp-v-3; exp-v-4) together (after averaging and rounding position propos-
als) agreed on level seven as an appropriate position. A quote shows that one of the
experts deemed level seven to be suitable:

93

“... and C should then cover alignment with third party in cadence form. . . C can
then be positioned in level seven (exp-v-4).

Release heartbeat

The first capability, namely requirements and incident gathering and prioritization
was already seen in the most premature interview cases that contributed to the
positioning of capabilities in level one and two, while the same held for the fixed
release heartbeat capability. However, production gathering and incident gathering
was seen in the case that was transitioning to a DevOps situation, which made
the concerning capability to be positioned in level four. The subsequent capability,
gradual release and production validation, was, on the other hand, positioned in
level six, since this type of releasing was detected in one of the interview cases
(iv-15) helping to determine the positioning of level six. Feature experimentation,
however, was also carried out in the latter case as earlier made clear by Guckenheimer
(2015), which followed up gradual release and production validation and was thus
positioned in level seven. Further, this focus area housed a continuous improvement
capability, namely release heartbeat improvement, as was shown earlier. Because
of the ongoingness inherent to this capability, level eight was associated with this
capability.

Branch and merge

The most premature interview cases already stored source code in version control,
according to assessment data (Centric, 2016c;Centric, 2016a), which led to position
version controlled source code in level one. One of these cases (Centric, 2016a) also
had a branching and merging strategy implemented. Because of the fact that a
branching and merging strategy was only detected in one of these premature cases
and follows storing source code in version control, branching/merging strategy was
positioned in level two. The next capability, was filled by the DevOps branch-
ing/merging strategy that was suggested to be positioned in level four, as the quote
below shows.

“... a C, incorporating developing on a single branch as much as possible, could then
be positioned in level four (exp-v-2).”

Observing the capabilities further, feature toggles was positioned in level six. Recall
that this capability concerned the use of feature toggles, which was used in the
interview case of (iv-15) to enable gradual releasing and experimentation as shown
by second validation round input (exp-v-4).

Development quality improvement

In the first case, earlier assessment data from one of the premature cases were found
to be using manual code quality improvement tactics (Centric, 2016c). Since only

94

one of the premature cases adopted code quality monitoring improvement tactics,
the capability was positioned in level two. Automated code quality monitoring,
on the other hand, was not found in the most premature cases, but was found
in the case largely determining the positioning of level three as was discovered in
corresponding assessment data (Centric, 2016b). Hence, at first, the decision was
made to position the automated code quality monitoring capability in level three.
The next capability was observed in the interview case providing most of the input to
level five, which concerned having a broken build detection mechanism and quickly
acting upon broken builds. The last capability, however, was formed by the gated
check-ins and was positioned in level six, since the use of these was observed in the
work of Guckenheimer (2015) relating to the interview case of (iv-15).

The description above presented the capability positions in the first version of the
maturity model. However, as stated earlier the suggestion for the maturity order
coming from a developer technical specialist, who was engaged in the second valida-
tion round, was leveraged in determining the new positions. Yet, the way towards
determining the positioning was as follows. It was advised by the second validation
round experts (exp-v-2; exp-v-3; exp-v-4; exp-v-5), after averaging and rounding
positions, to leave manual code quality monitoring at its current level. Further,
broken build detection was advised to be positioned in level four, automated code
quality monitoring in level four, gated check-ins in level six, and quality gates in
level seven. As can be inferred from the aforementioned, the rounded averaged po-
sitions of broken build detection and automated quality monitoring were even. As a
result, another way of determining the positions of the capabilities belonging to this
focus area, after validation, was needed. As such, the positioning proposal of the
developer technical specialist, being one of the experts, was followed, which made
automated code quality monitoring to be moved to level six.

Build automation

The most premature form of making up a software build concerned the manual cre-
ation of such a build. This capability was assigned to level one, since automated
builds were already detected in one of the premature cases (iv-2) resulting in posi-
tioning the capability in level two. The next capability was positioned in level four,
as this capability was thought to be present in the case that was shifting to DevOps,
as the use of continuous integration was mentioned in this case (iv-5).

Test automation

As became clear earlier, the maturity ordering of the capabilities belonging to test
automation was highly influenced by interview data. As such in the most premature
interview cases (iv-2; Centric, 2016a) systematic testing was performed, which led to
level one being an appropriate position. A part of the next capability, advanced sys-
tematic testing, was already denoted in one of the most premature cases that showed
integration tests were done (iv-1). However, no regression tests were perceived in

95

that case. For the reason that the execution of these tests only became visible in the
case of (iv-7), which contributed to level three, the execution of advanced tests were
placed in level three. Further, automated systematic testing was associated with
level four, since interview data from the case that was transitioning to a DevOps
situation showed that automated unit tests and nonfunctional tests were present.
Advanced automated systematic testing, as a next capability, was positioned in level
six, as one of its related interview cases (iv-14) was close to implementing this ca-
pability. The last capability, however, concerned test driven development and was
positioned in level seven because of it being related to teams having boundary cross-
ing knowledge, as a developer should have knowledge of testing. Still, as became
apparent earlier, test driven development was processed in advanced testing and was
replaced by in literature recognized automated recoverability and resilience testing
after processing second validation round input. The expert suggesting to add this
capability also suggested to position this capability in level eight:

“... you could replace test driven development with Chaos Monkey [automated re-
coverability and resillience testing]. Chaos monkey really is really a level eight [a
maturity level eight] (exp-v-3).”

Normally, level eight was devoted to the continuous improvement capabilities. How-
ever, since the expert stressed the capability to be placed in level eight and the
difficultiness of executing these tests was recognized in literature, this type of test-
ing was still adopted in level eight.

Deployment automation

The first capability, namely manual deployment, represented a highly premature
capability in that manual deployment to environments concerns the most basic de-
ployment situation one can think of. Therefore, this capability was associated with
level one. The next capability, acknowledged as partly automated deployment, was
recognized in one of the premature interview cases (iv-2) and was thus positioned
in level two, since in the other premature case no form of automated deployment
was found and level one was already occupied by the most premature capability.
Continuous delivery, on the other hand, was positioned in level five, since an inter-
nal document of the case determining most of the positioning of level five (Vulpe,
2015), denoted that continuous delivery was in place. Last but not least, continuous
deployment was positioned in level eight, as two experts (exp-v-3; exp-v-4) advo-
cated for continuous deployment to be adopted in level eight, while another expert
(exp-v-5) advised to leave continuous deployment at its current position. One ex-
pert (exp-v-2), however, denoted that continuous deployment is in fact easier to be
achieved than continuous delivery. This, however, was contradicted by Humble and
Farley (2010).

Release for production

Before processing second validation round input and as mentioned before, release
for production consisted of two capabilities after the first validation round. The

96

definition of release, as the first capability, was positioned in level two, since in one
of the less mature cases, a definition of done, which forms a part of the definition of
release, was present as shown by its assessment data (Centric, 2016a). In addition,
automated generation of release materials were perceived as a future capability along
with the ability to perform continuous delivery by (iv-3) and thus automated release
material generation was adopted in level five, where continuous delivery was also
found.

Besides, when looked at the definition of release and automated generation of sup-
porting materials in the light of the second validation round two experts (exp-v-3;
exp-v-2) suggested a different position for the automated generation of supporting
materials, which came down to level four. However, this new position had little
meaning, since, as became clear earlier, one expert (exp-v-4) and three interviewees
(iv-v8;iv-v-6;iv-v-12) together suggested to aim the focus area more at development
and test criteria to be met during a sprint, release and operations criteria to be
met before release and customer satisfaction criteria to be met in order for released
functionality to be declared finished.

The fact that one expert (exp-v-4) and three interviewees (iv-v-8; iv-v-6; iv-v-12)
from the second validation round came up with similar feedback on this focus area
led to the decision to add new capabilities and reconsider their position. As such,
capability A, or in other words the definition of done, remained in level two, since a
definition of done was already found in one of the premature interview cases. Fur-
ther, definition of release was placed in level five, since, during the validation, the
interviewee (iv-v-6) from whom the data influenced the positioning of the practices
in level five the most and also acted as a validator, remarked the presence of this
form of release of definition in his situation. Then, capability C, i.e. done according
to customer, was positioned in level six, for the reason that during the second vali-
dation round, the expert (exp-v-5), from whom the data influenced the positioning
of the practices found in level six, came up with this capability, which assumed the
presence of such a definition in his situation. At last, the automated generation
of materials was adopted in level seven, since second validation round data from
three interviewees (iv-v-12; iv-v-6; iv-v-8) suggested the automated generation of
supporting materials to be the most mature capability.

However, earlier interview data (iv-3) and second validation round data (iv-v-9)
suggested that the automated generation of supporting materials is enabled when
continuous delivery is possible. Yet, the presence of the automated generation of
supporting materials was not observed in the case of level five, where continuous
delivery was implemented. Hence, level seven as the position for the automated
generation of supporting materials was then still more likely to be correct, since
level eight aims more at the ongoing improvement capabilities in case no expert
input and/or literature play a decisive role.

97

Incident handling

Reactive incident handling, as a first capability, was adopted in level one, as this ca-
pability was recognized in the most premature cases in interview data (iv-2) and as-
sessment data (Centric, 2016a). However, proactive incident handling was observed
in the interview case aiding in the positioning of level five. The next capability
was first formed by root cause monitoring and was adopted in level six, since Guck-
enheimer (2015), which mirrored the interview case pertained to level six (iv-15),
showed that the detection of root causes was supported by analytics. However, sec-
ond validation round input from three experts (exp-v-2; exp-v-3; exp-v-4) suggested
to move this capability, which was called analytics based monitoring after processing
second validation round input, to level seven after averaging and rounding position
proposals. This caused level six to become empty. However, blameless postmortems
were added to level six, as these were recognized by Guckenheimer (2017) describing
the same situation of (iv-15).

Configuration management

As for configuration management, one of the premature cases adopted a manual way
of storing configuration items by storing these configuration items in documents as
shown by corresponding assessment data (Centric, 2016a). However, the other less
mature case used a deployment tool in which configuration items could be managed
(Centric, 2016c). Hence, both ways of managing configurations were adopted in the
first model in level one and two, respectively. Further, version controlled configura-
tion management is often seen in relation to continuous delivery (Humble & Farley,
2010). Hence, the choice was made to position version controlled configuration
management in level five, where continuous delivery was also present.

Architecture alignment

It was perceived from (iv-9) that architectural changes on the part of software that
impact the technical architecture were not always communicated to operations be-
fore a release, which denoted that in some cases software architectures were not
aligned with technical architectures. Other than that, one of the least mature cases
its assessment data (Centric, 2016c), showed there was alignment between the soft-
ware architecture and technical architecture, while in the other least mature case
no alignment between software and technical architectures was discerned. Because
of the interview data (iv-9) stating that architectures of both types were not always
aligned and the finding of architecture alignment in Centric (2016c), architecture
alignment was positioned in level two. Further, in the initial maturity model, stan-
dardized architecture alignment formed the second capability that was positioned
in level four, because, the team transitioning to DevOps developed a SaaS solu-
tion that resided on a standardized technical architecture, which was standardized
for SaaS applications (Van Gennip, 2016). Consequently, standardized architecture
alignment was positioned in level four. Last but not least, architecture alignment

98

governance was perceived as a future capability by (iv-10), who remarked the evolve-
ment of both the software and technical architecture in a controlled fashion as a
required capability in the context of continuous delivery. Hence, this capability was
categorized in level five in the first version of the maturity model. As said earlier,
however, the architecture focus area counted only two capabilities after processing
the second validation round input, which caused architecture alignment to remain at
its current position, while continuous architecture evolvement was positioned under
level five.

Infrastructure

At first, available infrastructure was covered by the first infrastructure capability,
which was positioned in level one. The motivation to position this capability in
level one is related to the fact that a SPO traditionally offers development and test-
ing environments for development and testing purposes, while acceptation tests and
production running of software are performed on the corresponding environments,
as was derived from (iv-13). Also second validation round input did not force the
capability to be repositioned, since manual provisioning of these environments often
occurs in traditional settings as well (Hüttermann, 2012). Further, equal infrastruc-
ture, which formed the subsequent capability before processing second validation
round input, was positioned in level five, since this capability was perceived in the
case contributing most to the positioning of level five, where equality among in-
frastructure was also noticed. The inclusion of provisioning in this capability also
had no further impact on its current position, as interview data also suggested that
automated provisioning was present to provision environments in the interview case
associated with level five:

“. . . Now there are scripts that are able to install everything on an environment. The
scripts to achieve this are equal [for each environment], only settings differ. . . with
lab management you could configure your environment and then lab management
builds up a virtual machine when you have clicked on play. If you then say, I want
to test this version for this customer, then lab management will install everything
and retrieves the correct data so that the environment is ready within one or two
hours (iv-6).

Lastly, the platform services capability was positioned in level six, as the inter-
view case linked to level six (iv-15) denoted having platform services used by the
teams.

4.4.2 Final version of the maturity model

Based on a conversation with one of the authors from Van de Weerd, Bekkers, and
Brinkkemper (2010), which took place after conducting the case studies described
in the next chapter, a number of last adaptions were made to the improved version

99

of the maturity model. Indeed, this conversation led to the addition of two more
levels and the repositioning of certain capabilities, as the focus of the earlier setup
and validation of the improved maturity model was mainly on the intradependen-
cies (i.e. the dependencies between the capabilities in the same focus area) instead
of the interdependencies (i.e. the dependencies between the capabilities across fo-
cus areas). The interdependencies between capabilities thus also required attention
in order to correctly comply with the focus area oriented maturity model theory.
Therefore, Figure 4.8 presents the final version of the maturity model including
the interdependencies that were detected to the extent possible, while still main-
taining a balanced maturity model in which the aforementioned situations are still
visible. More concretely and firstly, the level one, two and three capabilities from
the improved maturity model are now spread over level one up to and including
level five. Secondly, the level four capabilities from the improved maturity model
are now spread over level five and six. Thirdly, the level five capabilities from the
improved maturity model are now spread over level five, six and seven. Lastly, the
level six, seven and eight capabilities from the improved maturity model are now
spread across level eight, nine and ten.

Focus area \ Level 0 1 2 3 4 5 6 7 8 9 10

Communication A B C D E

Knowledge sharing A B C D

Trust and respect A B C

Team organization A B C D

Release alignment A B C

Release heartbeat A B C D E F

Branch and merge A B C D

Build automation A B C

Development quality improvement A B C D E

Test automation A B C D E

Deployment automation A B C D

Release for production A B C D

Incident handling A B C D

Configuration management A B C

Architecture alignment A B

Infrastructure A B C D

Culture and collaboration

Product, Process and Quality

Foundation

Figure 4.8: The final DevOps maturity model

The final maturity model shown above explicitly shows that capabilities in certain
focus areas are dependent on the realization of capabilities in other focus areas.
Hence, interdependencies can be observed. Moreover, indirect communication, sep-
arate teams and requirements and incident gathering and prioritization remain in
level one and are thus unchanged with respect to the improved maturity model.
The remainder of the capabilities initially residing in level one, however, shifted one
or more levels to the right. As such, requirements and incidents are gathered and
prioritized before storing source code relating to these requirements and incidents
in version control. Further, it is logical to first gather and prioritize requirements
and incidents before creating a software build including functionality that pertains

100

to the gathered and prioritized requirements and incidents.

The same holds for the remainder of the capabilities positioned in level two, namely
incidents must be gathered and prioritized before they can be acted upon and new
requirements might lead to the adoption of new versions of configuration items,
which in turn should be managed to support the developed software. Also, non
functional requirements impact both the software and technical architecture, which
then might need to be realigned before a release.

When perceiving level three, it makes sense to store source code in version control
to automatically create a software build. Further, after creating a software build,
the software build is often tested. Hence, systematic testing is positioned one level
higher than manual build creation.

Once the software build is tested, it can be deployed to production, which is in-
cluded in the manual deployment capability that is positioned in level four. Yet,
before deployment can occur, environments must be provisioned with the correct
configuration. Therefore, manually provisioned infrastructure is positioned one level
in front of manual deployment. After deploying the software build it can be released
and validated. As a result, fixed release heartbeat and validation is moved to level
five. Besides that, it often makes sense to follow a definition of done before releasing
software. Therefore definition of done is positioned one level in front of fixed release
and validation.

Also in level five and six, a number of interdependencies have been recognized. For
instance, to initiate trust and respect between dev and ops, direct communication
should at least be facilitated by management to bring dev and ops professionals in
touch with one another. Further, to establish proactive incident handling, incidents
should first be gathered from production, and in order to automatically provision
environments, configuration items are advocated to be stored in version control.
Next, when perceiving level seven to ten, two other interdependencies can be iden-
tified. That is, in order to gradually release software in production to certain user
groups feature toggles are needed. As a result, feature toggles is moved one level to
the left. And, when an organization wants to embrace continuous deployment, all
tests should be automated and run for each check-in, which makes that advanced
automated systematic testing is positioned before continuous deployment.

101

5 Case study

This chapter describes the changes to the capabilities and the maturity model that
were brought about after conducting the case study. Thereafter, the second section
concentrates on the cases that were part of the case study, while the last section
details on the evaluation of these cases. Besides, the improved maturity model was
used in the context of the case studies, as this model was also used to carry out an
advice to the assessees, which occurred before the construction of the final maturity
model. For this reason, the final maturity model is not leveraged in plotting the
maturity profiles.

5.1 Changes to the capabilities and the maturity

model

After obtaining input from the case study, it became clear that configuration man-
agement and infrastructure required modification. Moreover, in the case that was
transitioning to a DevOps situation, which also formed part of the case study, it
turned out that configuration items were already managed in version control. Hence,
this finding led to move version controlled configuration management from level five
to level four.

The reason for this is that in the very same case infrastructure was partly equal,
which meant that the development environment was still managed by internal IT and
differed in terms of hardware and configuration in comparison to test, acceptance and
production environments that were managed by a centralized operations party, who
also made use of declarative configuration files to provision this infrastructure (Inter-
vieweeJ, personal communication, April 7th, 2017). However, development and test
environments provided by the internal IT department turned out to be provisioned
either manually or automatically via scripts (internal IT, personal communication,
April 7th, 2017). Therefore, a new capability was assembled for infrastructure and
positioned in the maturity model. The capability was thus added to level four, since
the case transitioning to DevOps was related to level four. The capability forms
capability B, which makes the current capability B become capability C and so on,
and is presented below.

Resulting capability:

B. Partly automatically provisioned infrastructure

102

Action: A part of the infrastructure between development and production is
equivalent in terms of configuration (e.g. patch levels) and hardware and some
or all environments are provisioned automatically (e.g. via scripts or by pushing
a declarative configuration (i.e. a reproducible configuration in code to a virtual
machine that represents an environment)).

An important remark here is that this capability has already been added to Fig-
ure 4.8, which, as said before, encompasses the final maturity model that emerged
after conducting the case studies. Here, version controlled configuration manage-
ment was shifted to level five, while the newly proposed capability described above
was added to level six.

5.2 Cases

For seven of the filled in assessments, maturity profiles were made up showing the
current state of DevOps maturity and the actions to be taken to grow further. These
profiles were made on the basis of the improved maturity model rather than the final
maturity model, since the improved maturity model was used during the case study
and was also used to bring out an advice to the assessees. Observing the execution
of the case study itself, it turned out that one gathered filled in assessment focused
on doing projects instead of working on a product. While observing this case, it
quickly became apparent that this case could not be plotted onto the maturity model
in that no single answers were given to the questions, since, for instance, during some
projects tests were automated, whereas in other projects no attention was paid to
test automation. Still, from the seven maturity profiles that could be made on
the basis of the remaining filled in assessments, a common denominator maturity
profile was extracted by plotting the capabilities that all filled in assessments had
implemented on the improved maturity model to visualize how mature Centric, in
the scope of the filled in assessments, is in the adoption of DevOps. Figure 5.1 shows
this plot.

103

Focus area \ Level 0 1 2 3 4 5 6 7 8

Communication A B C D E
Knowledge sharing A B C D
Trust and respect A B C
Team organization A B C D
Release alignment A B C

Release heartbeat A B C D E F
Branch and merge A B C D
Build automation A B C

Development quality improvement A B C D E

Test automation A B C D E

Deployment automation A B C D

Release for production A B C D

Incident handling A B C D

Configuration management A B C

Architecture alignment A B

Infrastructure A B C D

Culture and collaboration

Product, Process and Quality

Foundation

Figure 5.1: Common denominator

When observing the maturity profile in Figure 5.1 it can be spotted that Centric,
in general, scores level two on team organization as cross functional teams exclud-
ing operations were present in all cases reflected in the filled in assessments. The
same holds for branch and merge, which denotes that branch and merging strate-
gies were in place in all cases. Scrutinizing the model further, the observation is
made that manual code quality improvement mechanisms were also adopted in all
cases involved, indicating that already a number of level two capabilities were im-
plemented. However, the attainment of maturity level two as an overall maturity
level is still a long way off, as the maturity profile shows that some focus areas are
lagging behind.

More concretely, knowledge sharing between development and operations was not
present in all cases, while trust and respect, alignment, test automation, release for
production and architecture were also not developed to the extent required to attain
level one. Moreover, to achieve level one, Centric should first pay attention to test
automation as two of filled in assessments made clear that unit testing were not
performed at all, which made capability A of test automation not to be achieved.
In the boundaries of the assessments being part of this case study this means that
two cases should improve their testing by adopting manual unit tests in order for
Centric to reach an overall maturity level of one.

Still, as said earlier the common denominator maturity profile only shows the at-
tained capabilities that were found to be implemented in all filled in assessments.
When shifting the focus to the individual filled in assessments, it is interesting to
perceive differences in maturity among the cases reflected in the filled in assess-
ments. Therefore, the remainder of this section outlines the maturity plots of the
individual cases including the common denominator in a dark green color in order
to make the comparison between the individual maturity profiles with the common
denominator visible. In addition, each case is provided with a descriptive statistics
table. This table includes columns that show the minimum, maximum, average level

104

and standard deviation for each of the perspectives. The standard deviation is also
adopted to show the amount of spreadness in the data.

5.2.1 First case

The maturity profile shown in Figure 5.2 demonstrates a case of a product that
was released to the customer in an on premise manner. Moreover, the product
in question was hosted at Centric its data center as well as at data centers at
customers’ sites. The product has been under development since the early nineties
and was developed by one team consisting of nine professionals including a product
owner, a scrum master, designers, developers and testers. Considering the plot, it is
observed that alignment was in place to an already mature extent, since dependent
products were released at the same time in the form of a chain. However, even
though the case scores high at alignment, many other focus areas require attention
as these are underdeveloped in comparison to the alignment focus area. As such, the
focus should first be on test automation to reach level one, whereafter the emphasis
should be put on adopting automated builds and partly automated deployment.
Next, a definition of done should also be in place, configuration management should
be managed by means of tooling and the software and technical architecture should
be aligned before a release. Only then a maturity level of two is reached.

Focus area \ Level 0 1 2 3 4 5 6 7 8

Communication A B C D E
Knowledge sharing A B C D
Trust and respect A B C
Team organization A B C D
Release alignment A B C

Release heartbeat A B C D E F
Branch and merge A B C D
Build automation A B C

Development quality improvement A B C D E

Test automation A B C D E

Deployment automation A B C D

Release for production A B C D

Incident handling A B C D

Configuration management A B C

Architecture alignment A B

Infrastructure A B C D

Culture and collaboration

Product, Process and Quality

Foundation

Figure 5.2: Maturity profile from the first case

When perceiving the descriptive statistics belonging to this case in Table 5.2 the
most interesting fact to point out is that the highest average is devoted to culture
and collaboration, which at the same time has the highest standard deviation due to
the low scores achieved for knowledge sharing and trust respect, and the relatively
high scores achieved for communication and release alignment. As a result, culture
and collaboration incorporates the highest amount of spreadness around the average
when compared to the other focus areas.

105

Table 5.2: Descriptive statistics from the first case

Min Max Avg Stdev
CC 0 6 2.4 2.6
PPQ 0 5 1.75 1.83
F 0 1 0.67 0.57

5.2.2 Second case

The maturity profile of the second case is plotted in Figure 5.3. This product
concerned a SaaS application of four years old, which was hosted at the data center
from Centric. Two teams were working on the product of which one team consisted
of six professionals including developers and testers and the other team comprised
five professionals covering developers and testers. Here, professionals were in the
midst of automating deployments using release management from Microsoft. It
becomes clear that this case resides at the same level as the case described before
and shows that test automation forms a bottleneck in achieving a higher maturity
level. The filled in assessment related to this case made clear that unit testing
was not done at all, which prevented the case form achieving level one. However,
once this in place, the next concern is architecture alignment in order to achieve a
maturity level of two.

Focus area \ Level 0 1 2 3 4 5 6 7 8

Communication A B C D E
Knowledge sharing A B C D
Trust and respect A B C
Team organization A B C D
Release alignment A B C

Release heartbeat A B C D E F
Branch and Merge A B C D
Build automation A B C

Development quality improvement A B C D E

Test automation A B C D E

Deployment automation A B C D

Release for production A B C D

Incident handling A B C D

Configuration management A B C

Architecture alignment A B

Infrastructure A B C D

Culture and collaboration

Product, Process and Quality

Foundation

Figure 5.3: Maturity profile from the second case

Again, when looking at Table 5.3, the highest average and amount of spreadness
can be found in the culture of collaboration perspective due to the fact that a low
score is achieved for release alignment, while relatively high scores are achieved for
the other focus areas. However, foundation also shows a high standard deviation,
which is mainly devoted to the architecture alignment focus area that is lagging

106

behind when compared to the configuration management and infrastructure focus
areas.

Table 5.3: Descriptive statistics from the second case

Min Max Avg Stdev
CC 0 5 3.4 2.3
PPQ 0 5 2.5 1.69
F 0 4 2.67 2.3

5.2.3 Third case

The third case already reached level one, as reflected in the maturity profile displayed
in Figure 5.4. In this case, professionals worked an on premise product that was
hosted at data centers residing at customers’ sites. Here, a maturity level of one is
achieved, but many chances to become more mature are still left. In order to grow
more mature, professionals related to this case should devote attention to adopting
a steady release heartbeat and automated builds. Next, automated deployment
should be implemented to some extent and configurations should be managed with
the help of tooling and both software and technical architectures should be aligned
before a release.

Focus area \ Level 0 1 2 3 4 5 6 7 8

Communication A B C D E
Knowledge sharing A B C D
Trust and respect A B C
Team organization A B C D
Release alignment A B C

Release heartbeat A B C D E F
Branch and merge A B C D
Build automation A B C

Development quality improvement A B C D E

Test automation A B C D E

Deployment automation A B C D

Release for Production A B C D

Incident handling A B C D

Configuration management A B C

Architecture alignment A B

Infrastructure A B C D

Culture and collaboration

Product, Process and Quality

Foundation

Figure 5.4: Maturity profile from the third case

When perceiving Table 5.4, a similar trend can be observed when compared to
the previous cases. That is, culture and collaboration is again the perspectives that
incorporates the highest scores, which leads to a high average. The high standard de-
viation, here, is mainly caused by the low score on release heartbeat alignment.

107

Table 5.4: Descriptive statistics from the third case

Min Max Avg Stdev
CC 0 5 3.4 2.3
PPQ 1 6 1.88 1.73
F 0 1 0.67 0.58

5.2.4 Fourth case

The fourth case, as shown in Figure 5.5, also had a maturity level of one. In this
case professionals worked on a product of three years old that was offered both as
a cloud and on premise solution. Only one team comprising developers, a product
owner and an architect worked on this product. In order to attain level two and
three, however, professionals pertained to this case should focus on aligning the
software architecture with the technical architecture before a release. A remark in
this case, however, is the fact that gated check-ins were not implemented, whilst
automated code quality improvement was, when observing the development quality
improvement focus area. Based on this finding, the decision was still made to stretch
the colored bar up to and including level six.

Focus area \ Level 0 1 2 3 4 5 6 7 8

Communication A B C D E
Knowledge sharing A B C D
Trust and respect A B C
Team organization A B C D
Release alignment A B C

Release heartbeat A B C D E F
Branch and merge A B C D
Build automation A B C

Development quality improvement A B C D E

Test automation A B C D E

Deployment automation A B C D

Release for production A B C D

Incident handling A B C D

Configuration management A B C

Architecture alignment A B

Infrastructure A B C D

Culture and collaboration

Product, Process and Quality

Foundation

Figure 5.5: Maturity profile from the fourth case

Looking at Table 5.5 High averages and standard deviations are again observed in
the culture and collaboration and foundation perspectives relating to this case. The
high standard deviation for culture and collaboration is caused by the low scores
on communication and trust and respect and higher scores on knowledge sharing
and release alignment. When observing the foundation, architecture alignment con-
tributes to a high standard deviation, since a low score is achieved for this focus
area.

108

Table 5.5: Descriptive statistics from the fourth case

Min Max Avg Stdev
CC 0 6 2.4 2.3
PPQ 1 6 2.88 1.64
F 0 4 2.67 2.31

5.2.5 Fifth case

Another level one case is represented in the maturity profile portrayed in Figure 5.6.
In this case professionals were working on an on premise product. This product was
hosted at the customers’ site and was twenty three years of age. In total, two teams
worked on the product. One of these teams consisted of fourteen professionals
including developers, testers, a UX designer, two functional designers, a product
owner and a scrum master. The other team involved five developers and two testers
and worked in a waterfall fashion. When looking at the case its corresponding
plot, the observation can be made that this case scores the maximum level when it
comes to branch and merge. However, in order to grow towards maturity level two,
configuration items should be managed in tooling rather than in documents or the
like.

Focus area \ Level 0 1 2 3 4 5 6 7 8

Communication A B C D E
Knowledge sharing A B C D
Trust and respect A B C
Team organization A B C D
Release alignment A B C

Release heartbeat A B C D E F
Branch and merge A B C D
Build automation A B C

Development quality improvement A B C D E

Test automation A B C D E

Deployment automation A B C D

Release for production A B C D

Incident handling A B C D

Configuration management A B C

Architecture alignment A B

Infrastructure A B C D

Culture and collaboration

Product, Process and Quality

Foundation

Figure 5.6: Maturity profile from the fifth case

Table 5.6 shows the descriptive statistics of this case. A different trend is observed
here when compared to the cases discussed earlier. Moreover, a high average and
standard deviation are obtained for product, process and quality. These values are
mainly caused by the fact that very high scores are achieved for branch and merge,
build automation and development quality improvement focus areas.

109

Table 5.6: Descriptive statistics from the fifth case

Min Max Avg Stdev
CC 0 3 1.2 1.3
PPQ 1 6 3.13 1.73
F 1 2 1.33 0.58

5.2.6 Sixth case

A more mature case that appeared after making up the maturity plots was the sixth
case, which largely contributed to the positioning of the capabilities in level four as
became clear in earlier results. Here, professionals were transferring to a DevOps
way of working and worked on a SaaS product. The product was hosted at Centric
its own datacenter and was two years old. In total, three development teams worked
on the product consisting of eight professionals that covered tech leads, developers
and testers. Apart from that, an Ops team of six persons was present that cov-
ered developers, testers, system administrators, support and architects. A maturity
profile of this case is adopted in Figure 5.7 and shows this case attained an overall
maturity of level three. The only capability that prevents this case from attaining
level four is continuous build creation, which was first thought to be implemented,
as the interviewee related to this case mentioned the use of continuous integration
(iv-5). Nevertheless, once this capability has been implemented, further steps can be
taken to grow towards level five. Indeed, then knowledge sharing between dev and
ops should occur actively, trust and respect should be better facilitated by higher
level management, a definition of release should be in place and all environments
should be alike in terms of configuration and hardware, which was currently not
the case as the development environment still differed from test, acceptance and
production. A noteworthy remark pertained to this case with respect to all other
cases, however, is the fact that only this case encompassed a team consisting of
dev and ops professionals, among others. This ”ops team” was a virtual team that
formed the bridge between developers, testers and centralized operations, where the
developers and testers resided at the same location, but were were geographically
dispersed from the operations people.

110

Focus area \ Level 0 1 2 3 4 5 6 7 8

Communication A B C D E

Knowledge sharing A B C D
Trust and respect A B C
Team organization A B C D
Release alignment A B C

Release heartbeat A B C D E F
Branch and merge A B C D
Build automation A B C

Development quality improvement A B C D E

Test automation A B C D E

Deployment automation A B C D

Release for production A B C D

Incident handling A B C D

Configuration management A B C

Architecture alignment A B

Infrastructure A B C D

Culture and collaboration

Product, Process and Quality

Foundation

Figure 5.7: Maturity profile from the sixth case

The descriptive statistics in Table 5.7 show that the values from the different per-
spectives are in line with one another, which means that this case is a balanced
one. The highest standard deviation, though, belongs to the product, process and
quality perspective and is caused by the relatively low score on build automation
and release for production.

Table 5.7: Descriptive statistics from the sixth case

Min Max Avg Stdev
CC 4 6 5 1
PPQ 2 6 4.5 1.69
F 4 5 4.33 0.58

5.2.7 Seventh case

Lastly, the most mature case in the context of this case study covers the case that
largely contributed to the positioning of the capabilities belonging to level five.
Professionals residing in the context of this case were working on a SaaS solution of
three years of age. This product was either hosted at a datacenter from Centric or
at the customers’ premises. Besides, eight teams consisting of developers and testers
worked on this product. The maturity profile related to this case is portrayed in
Figure 5.8. As can be inferred from Figure 5.8 the maturity profile shows this
case reached level five on the maturity model and even shows that a number of
the capabilities from level six were implemented. However, although many tasks
were carried out in a cross functional manner including ops (e.g. setting up system
concepts and load tests), no cross functional teams with ops were present. A next
step would thus be to involve operations in the cross functional teams that already
consisted of developers and testers. Aside from that, other next steps would be

111

to conduct automated acceptance testing systematically and adopt a definition of
release that stretches to the customer, so that a feature is only declared done once
it yields customer value. Finally, blameless postmortems should be implemented to
completely attain level six.

Focus area \ Level 0 1 2 3 4 5 6 7 8

Communication A B C D E
Knowledge sharing A B C D
Trust and respect A B C
Team organization A B C D
Release alignment A B C

Release heartbeat A B C D E F
Branch and Merge A B C D
Build automation A B C

Development quality improvement A B C D E

Test automation A B C D E

Deployment automation A B C D

Release for production A B C D

Incident handling A B C D

Configuration management A B C

Architecture alignment A B

Infrastructure A B C D

Culture and collaboration

Product, Process and Quality

Foundation

Figure 5.8: Maturity profile from the seventh case

Table 5.8 represents, similarly to the previous case, a balanced case, where no outliers
are visible. The highest standard deviation, here, is perceived in the culture and
collaboration row and can be explained by the low score on team organization.

Table 5.8: Descriptive statistics from the seventh case

Min Max Avg Stdev
CC 2 6 4.8 1.64
PPQ 4 7 5.25 1.04
F 4 6 5 1

112

5.3 Evaluation of the cases

When focusing on the descriptive statistics of the perspectives across cases, Table 5.9
shows that the minimum level reached across cases and perspectives is zero, while
the maximum score that is reached is seven in the product, process and quality
domain. In particular, the seventh case scored a seven in the development quality
improvement focus area. When observing the averages, culture and collaboration
and product, process and quality approximate one another, while the average of
foundation is lagging behind. This indicates that on average the lowest scores are
reached in the foundation perspective across cases. When looking at the standard
deviation culture and collaboration has the largest standard deviation, which means
that most spreadness around the average across cases is present in the culture and
collaboration perspective.

Table 5.9: Descriptive statistics per perspective across cases

Min Max Avg Stdev
CC 0 6 3.2 2.2
PPQ 0 7 3.1 2
F 0 6 2.5 2

However, Table 5.9 only shows a broad overview across cases at perspective level. For
a more profound insight into the differences in focus areas across cases, Table 5.10
is to be consulted. Here it is interesting to point out that team organization, branch
and merge and development quality improvement score a minimum of two, which
indicates that all cases reached level two on these focus areas, as also shown in Fig-
ure 5.1. When moving on to the next column, the maximum score that is achieved
is in the domain of the development quality improvement focus area as previously
mentioned. The same focus area also scores the highest average, while the lowest
average belongs to architecture alignment. The lowest average, however, is relatively
low when compared to all other averages in the table, which indicates that archi-
tecture alignment should receive the needed focus across cases in order to bring the
average of this focus area in line with the remainder of the focus areas. Finally, the
standard deviations show that the most spreadness around the averages is present
in the trust and respect, test automation and architecture alignment focus areas,
whereas the smallest standard deviations found are pertained to build automation,
development quality improvement and deployment automation, which means that
scores obtained in these focus areas across cases are reasonably in line with one
another.

113

Table 5.10: Descriptive statistics per focus area across cases

Min Max Avg Stdev
Communication 1 5 3.7 1.9
Knowledge
sharing

0 5 3.6 1.8

Trust and re-
spect

0 6 2.9 2.7

Team organi-
zation

2 6 2.6 1.5

Release align-
ment

1 6 2.7 1.7

Release heart-
beat

1 6 2.7 1.7

Branch and
merge

2 6 4.6 1.9

Build au-
tomation

1 4 2.9 1.5

Development
quality im-
provement

2 7 5 1.63

Test automa-
tion

0 6 2.6 2.3

Deployment
automation

1 5 2.6 1.7

Release for
production

0 5 2.6 1.8

Incident han-
dling

1 5 2.1 2

Configuration
management

1 4 2.7 1.6

Architecture
alignment

0 5 1.7 2.4

Infrastructure 1 6 3 2

114

6 Discussion and limitations

6.1 Main contributions

As shown in the theoretical framework, hardly any processes and methods were
available that concentrate how to adopt DevOps. An aim of this work was thus
to create two types artifacts that aided in the aforementioned. These artifacts
concerned the DevOps competence model showing the focus areas to be considered
in order to implement DevOps from a balanced perspective and a maturity model
showing a fine grained approach to grow towards a more mature DevOps situation.
Furthermore, when placing these artifacts in the context of the earlier identified
gaps in literature, which clarified that no literature was observed that showed a
balanced DevOps model and an applicable fine grained DevOps maturity model,
the main contribution of these artifacts is to fill in these identified gaps to a certain
extent, since the artifacts came not without limitations as is shown in the section
below.

6.2 Limitations

This sections outlines the limitations that were part of this research. First, limi-
tations that were inherent to the DevOps competence model, drivers, capabilities,
focus areas and perspectives are presented. Second, the limitations pertained to the
maturity model are outlined. Third and last, limitations involved in the case study
are discussed.

6.2.1 The DevOps competence model and the drivers, per-
spectives, focus areas and capabilities

While acquiring drivers and capabilities in literature, as many drivers and capa-
bilities as possible were attempted to be captured. However, as far as drivers are
concerned, the time span in which the search for drivers was conducted did not nec-
essarily form a limitation as literature suggested that there was a general agreement
regarding DevOps drivers. The same could not be stated when looking at the ca-
pabilities, since a plethora of DevOps capabilities were mentioned in literature and
not sufficient time was available to collect all of these capabilities and examine them

115

in depth. As a result, it can only be said that a part of the capabilities residing
in literature were captured. Further, maturity was considered while searching for
capabilities in literature, which also limited the search scope in that the attempt
was made to find capabilities that were more mature than capabilities already col-
lected through the interviews and through literature review. Apart from all this,
the fact is acknowledged that not all relevant literature could be accessed due to
access restrictions, and although a set of keywords aiming to elicit the most relevant
literature was used, no guarantee is given that the keywords used were sufficiently
representative to retrieve all literature available on DevOps drivers and capabili-
ties. Last but not least, while conducting the literature search, only a small set of
search engines was consulted, which puts another restriction on the results obtained
through literature review.

Apart from identifying drivers and capabilities in literature, drivers and capabil-
ities were also obtained through interviews. A first limitation here is the origin
of the interviewees, since twelve out of the fourteen interviews were conducted at
Centric. Naturally, this places a large limitation on the results obtained through in-
terviews as this implies that many of the results are biased towards one organization.
Notwithstanding, there is an explanation for the execution of such a large amount
of interviews within one organization. Namely, the research was conducted at this
organization and as already noted in the problem statement, DevOps is still in its
infancy and so it was observed that, apart from Centric, not many Dutch software
product organizations were actively involved in implementing DevOps, which made
it difficult to conduct many interviews at other software product organizations.

Besides the limitations of the data collection methods on the driver and capabilities
results, the first validation round including the validation of the capabilities, focus
areas, perspectives and the DevOps competence model also incorporated limitations
affecting the results. More specifically, the first limitation concerned that all partic-
ipants involved in the first validation round came from the same organization. This
limitation impacted the generalizability of the results in that the participants could
only validate the capabilities, focus areas, perspectives and the DevOps competence
model from the perspective of one organization. Moreover, another limitation is that
none of the participants participating in the first round validation was a real De-
vOps expert, although all participating experts had affinity with or were specialized
in fields related to DevOps.

Proceeding from the first validation round to the second one, other limitations could
be acknowledged. Moreover, a limitation here is the fact that not all interviewees
were able to validate the contents, because of time constraints or because of not
being able to be present within the planned time range that was set out to validate
the capabilities with interviewees and experts. Another limitation, here, is reflected
in the fact that validation sessions with the interviewees and experts were conducted
separately. This caused criteria to be made up to process validation input from both
the interviewees and expert. This could be seen as a limitation, since conducting a
group validation could be considered a better means for validation in that consensus

116

among the group members can then be reached.

6.2.2 Maturity model

When moving on to the validation of the maturity model, it is of prime importance
to acknowledge that the validation of the positioning of the capabilities in the matu-
rity model was done in parallel with the validation of the capabilities themselves in
a second validation round due to time constraints. However, validating both the ca-
pabilities and the positioning of the capabilities in parallel formed a large limitation
within this research. That is, additions to existing capabilities solely recognized by
interviewees could not be validated by the experts, as the contents of the capabilities
were not updated, while executing the second validation round.

Moreover, the addition to manual code quality monitoring of the development qual-
ity improvement focus area, which concerned the addition of code conventions and
emerged from solely interviewee validation data, could not be validated properly in
conjunction with its position during the validation session with the experts, since
these changes were not processed in the capability before validating the position
of this capability. The same held for the additions to the extent of freedom with
regard to modifying environments in managed platform services (capability C from
infrastructure). Lastly, capability B, C and D of release for production and their
positions were not validated, since these capabilities arose as new capabilities during
the sessions with the interviewees and one of the experts, ending up in release for
production being mostly affected by conducting the validation sessions in parallel.
The fact is thus recognized that a better approach would have been to first validate
the capabilities with the interviewees, subsequently process the input emerging from
this in the capabilities, then create the maturity model and, at last, validate the
maturity model. However, time constraints did not allow to perform the valida-
tion in such a sequential order. Also, the case study impacted the capabilities and
their positioning, since Infrastructure - Capability B was added and positioned and
Configuration management - Capability C was repositioned due to newly gained
insights from the case study. However, this also yielded the fact that Infrastruc-
ture - Capability B, its position and the newly assigned position from Configuration
management - Capability C were not validated, as the case study occurred after
the validations. Apart from the aforementioned, conversations with the experts to
validate the capabilities and their positioning also took place individually, which
caused validation input to be processed on the basis of processing criteria. This also
formed a constraint when looked at the positions of the capabilities in the matrix
in that a group validation might have yielded other positioning results as a result of
consensus reaching.

Finally, while setting up the maturity model the positioning was mainly led by
several situations that were acknowledged in practice, whereafter the validation with
the experts mainly focused on the intra dependencies, while also taking into account

117

the situations that were observed during the study. However, the maturity model
theory also includes interdependencies among capabilities, which were not explicitly
present in the improved maturity model. Therefore, a final version version of the
maturity model including interdepdencies was proposed. The inclusion of these
interdependencies also led to the fact that certain validated intra dependencies had
to be shifted. As a result, the changes processed in the final maturity model impacted
earlier processed validation input, which could be considered a limitation.

6.2.3 Case study

After the second validation round, a case study was set up to test the capabilities and
the appliance of the maturity model in practice. It was found that the questions
formed around the capabilities and accompanying information that was provided
with each question were clear enough to obtain filled in assessments from which
a maturity profile could be made, although in a few cases a part of the questions
necessitated other people to be contacted to obtain a desirable answer. For instance,
one self assessment was sent to a business development manager, who handed the
self assessment to a scrum master to fill in the self assessment. This scrum master,
however, could not give a desirable answer to a part of the questions related to
configuration management and infrastructure. Hence, an infrastructure specialist
needed to be consulted to answer these questions. A further point of concern is the
fact that the questions were scoped and a number of capabilities were left out to
create more to the point questions and a higher chance of obtaining more responses.
This ended up in the fact that certain parts of a number of capabilities were not
evaluated and a number of capabilities were not evaluated at all.

When further observing the limitations with respect to the case study, it already be-
came clear in the research approach results chapter that not all sent out assessments
were filled in, since only eight filled in assessments were obtained, which yields a
limitation, as more response is always better in that the capabilities and their ma-
turity ordering could have been better evaluated, since it was perceived in one case
that automated code quality improvement (capability D) was implemented, while
gated check-ins (capability C) were not. This indicates that the maturity order
might be incorrect. However, the aforementioned phenomenon was only perceived
in one case, which still provides too less evidence to deem the maturity order to be
incorrect.

Aside from the aforementioned, the case study was conducted in one organization,
which poses a limitation on the generalizability of the case study results, as, even
though cases were highly divergent, the cases still belonged to the same overarching
organization.

118

7 Conclusion and future work

This chapter provides the conclusions obtained after conducting the research and
proposes future work that followed from conducting this research.

7.1 Conclusion

In this section, conclusions are given by answering the sub research questions, which
leads to an answer to the main research question. To this end, the sub research ques-
tions and main research question are listed below and each of these is accompanied
with an answer that embodies a conclusion.

SRQ1: What are the DevOps drivers and capabilities for product
software organizations to implement DevOps?

The drivers to implement DevOps concern the creation of a culture of collaboration,
agility and process alignment, automation, higher quality, develop and deploy cloud
based applications and continuous improvement, as shown in subsection 4.1. These
drivers relate to the focus areas belonging to the perspectives, which are presented
in the DevOps competence model as well as the maturity model. In general, all
focus areas relate to multiple drivers, but emphasize some drivers more than others.
For instance, the focus areas in the culture and collaboration perspective is mainly
related to creating a culture of collaboration, but also stress the agility and pro-
cess alignment and continuous improvement drivers. The same applies to the focus
areas residing in the product, process and quality perspective and the foundation
perspective, as here also focus areas could relate to multiple drivers, whereby the
relation with some drivers are more dominantly present than the relation with other
drivers. When shifting the focus to the capabilities, sixty three capabilities were
detected after conducting a literature review, interviews, several validation rounds
and the case study. These capabilities that were part of focus areas are shown in
subsection 4.3 and chapter 5. Each focus area thus encompasses a set of correspond-
ing capabilities, where each capability follows up a previous capability in terms of
maturity.

SRQ2: What does a DevOps competence model incorporating DevOps
drivers and capabilities look like?

On the basis of the perspectives, focus areas, capabilities and literature, a DevOps
competence model was assembled and took the form of a house, thereby mimick-

119

ing the software house phenomenon. The DevOps competence model is elaborated
on in subsection 4.2 and incorporates three perspectives that are termed culture
and collaboration, product, process and quality and foundation, where culture and
collaboration forms the top part of the house, product process and quality forms
the mid-part of the house and the foundation forms the bottom part of the house.
Each of these perspectives includes focus areas that cope with certain aspects be-
longing to the perspective. As such, culture and collaboration includes focus areas
dealing with communication and knowledge sharing and trust and respect, but also
with team organization and alignment. Apart from that, the product, process and
quality perspective encompasses focus areas dealing with development and release
processes, among others, and automation thereof. Lastly, the foundation perspec-
tive covers configuration management, architecture and infrastructure focus areas
that support the, product, process and quality perspective. Further, a green arrow
surrounds the focus areas from the product, process and quality perspective to vi-
sualize the feedback loops involved in DevOps. These feedback loops are present in
the whole chain of releasing software indicating that feedback loops already start at
development and stretch up to and including the customer. Besides, the presented
perspectives are also associated with one another in that at least some form of col-
laboration should be in place to perform the work reflected in the product, process
and quality and foundation perspectives such as the development of functionality,
testing and providing an environment with a correct configuration. From a bottom
up perspective, configuration management, architectural work and infrastructure is
needed to support development, testing and deployment, among others. Hence, the
relationship between foundation and product, process and quality. Finally, stake-
holders were adopted in the DevOps competence model to clarify the stakeholders
playing a role in a DevOps setting within a SPO.

SRQ3: What does a DevOps maturity model based on the contents of
the DevOps competence model look like?

The same basis used for the construction of the DevOps competence model, namely
the capabilities, focus areas and perspectives, was also used to construct a DevOps
maturity model, which is discussed in subsection 4.4. In addition, maturity levels
were present in the maturity model and determined using internal documents and
assessment data from the earlier assessments done with the internal DevOps com-
petence model from Centric. In these maturity levels, the capabilities that were
detected at an earlier stage were positioned in such a way that a growth path was
established.

SRQ4: How can SPOs leverage the DevOps maturity model to become
DevOps mature?

As the results of the conducted case study showed in chapter 5, questions can be
formed on the basis of the capabilities (see Appendix D) and subsequently be lever-
aged in a self assessment to help software product organizations grow more mature.
This self assessment can then be filled in and on the basis of the answers a maturity

120

profile can be made. The constructed maturity profile then shows the next steps to
be taken in order to grow towards a more mature DevOps situation.

MRQ: How can software product organizations become DevOps
mature?

By concentrating on the sixteen focus areas identified in this study, a SPOs can
become more DevOps mature. More specifically, a SPO can adopt the capabilities
underlying these focus areas to become more DevOps mature. To have an insight
into the path to be followed to become more DevOps mature, a SPO can leverage
the maturity model to perceive its current DevOps maturity level and the actions
to be taken (i.e. what capabilities should be implemented next) to become more
DevOps mature.

7.2 Future work

The limitations section showed that the research came with a number of limita-
tions, which form input to future research. First, it became clear that only a small
amount of keywords were used and a subset of search engines were consulted, which
poses a limitation on the drivers and capabilities obtained through literature review.
As became clear also maturity was considered during the literature review, which
limited the collection of certain capabilities. At least a broader literature review
or a systematic literature review on DevOps could thus be conducted to ensure a
more profound collection of drivers and capabilities. An example of areas where
the literature review could focus on is the intertwinement of the higher level soft-
ware product management processes with DevOps such as portfolio management.
Further, the literature review could aim at how to cope with cultural differences
that could be present when people from different countries should work together.
Further, the domain of configuration management might require extra attention and
might be extended with the management of conversion and migration scripts. Also,
since DevOps is a growing field that has not yet matured, a broader literature review
conducted in the future might lead to new insights. Second, a limitation imposed
on the interviews concerned the fact that most of the interviews were conducted
in the same organization. Hence, another way of ensuring a richer body of drivers
and capabilities entails conducting interviews at more independent software product
organizations.

Moving on to the validation of the DevOps competence model and its contents, the
DevOps competence model itself was solely validated by Centric experts of whom
each expert had experience in a subdomain related to DevOps. Hence, to generalize
the DevOps competence model, the model needs to be validated by experts not
related to Centric and are known for their DevOps expertise. On the contrary,
the capabilities and, focus areas were, apart from being validated by experts from
Centric, also validated by three DevOps experts not related to Centric, suggesting

121

that the capabilities and focus area could be generalized to a small extent. However,
to generalize results to a larger extent, validations of the capabilities and focus areas
from more independent perspectives are needed, preferably, in a group setting, where
participants can reach consensus.

Further, an amount of capabilities were added later on, as these emerged from
validation input and the case study. These capabilities require further validation
with respect to their contents and positions. Besides, as became clear earlier, the
second round validations were conducted in parallel, which caused some positions
of modified capabilities not to be validated. Also, the determination of the amount
of levels and positioning was, in the first place, led by data mainly coming from
one organization and in the end a final maturity model was made up and took
into account interdependencies that also impacted the validated intradependencies.
Future work could thus concern validating the final maturity model preferably in a
group setting instead of an individual setting.

When putting the emphasis on the case study, not all capabilities were evaluated
during the case study and a number of capabilities were not evaluated to their fullest
extent by leaving out certain parts, which means that these capabilities still require
attention when it comes to evaluation. Also, to better evaluate maturity ordering
of the capabilities, a broader case study should be done involving multiple software
product organizations as it became clear that, in the context of development quality
improvement, one case had a more mature capability implemented, while it had a
less mature capability not implemented. A broader evaluation might reveal more of
such cases, also with regard to other focus areas.

Aside from broader and more comprehensive validations and evaluations, other fu-
ture work could aim at studying situational factors, which take into account the
context of a SPO and can be used to determine the correct set of capabilities to be
implemented in a certain SPO context (Bekkers et al., 2010).

122

References

Ambler, S. (2016, August 19). How to Choose an Agile Release Ca-
dence [Web log post]. Retrieved April 11, 2017 from http://www

.disciplinedagiledelivery.com/choose-release-cadence/.
Anderson, K. H., Kenyon, J. L., Hollis, B. R., Edwards, J., & Reid, B. (2014). Us

patent 8,677,315. Google Patents.
Angara, J., Prasad, S., & Sridevi, G. (2017). The factors driving testing in de-

vops setting-a systematic literature survey. Indian Journal of Science and
Technology , 9 (48), 1-8.

Babar, Z. (2015a). Modeling DevOps deployment choices using process architec-
ture design dimensions. Proceedings of the conference on the the Practice of
Enterprise Modeling, Valencia, 322-337.

Babar, Z. (2015b). Modeling Software Process Configurations for Enterprise Adapt-
ability. Proceedings of the working conference on the Practice of Enteprise
Modelling, Valencia, 125-132.

Barile, S., Franco, G., Nota, G., & Saviano, M. (2012). Structure and dynamics
of a “t-shaped” knowledge: From individuals to cooperating communities of
practice. Service Science, 4 (2), 161–180.

Bass, L., Jeffery, R., Wada, H., Weber, I., & Zhu, L. (2013). Eliciting operations
requirements for applications. Proceedings of the 1st International Workshop
on Release Engineering, Seattle, 5-8.

Bass, L., Weber, I., & Zhu, L. (2015). Devops: A software architect’s perspective.
New Jersey: Addison-Wesley Professional.

Bassano, M. (2016, March 11). FAQ - Centric Omgevingen Tools. Unpublished
internal document, Centric.

Beal, H. (2014, July 23). Optmized DevOps [Web log post]. Retrieved Febru-
ary 14, 2017 from http://www.ranger4.com/ranger4-devops-blog/bid/

76237/Optimized-DevOps.
Bekkers, W., Van de Weerd, I., Spruit, M., & Brinkkemper, S. (2006). On the

creation of a reference framework for software product management: Valida-
tion and tool support. Proceedings of the international Workshop on Software
Product Management, Washington, 3-12.

Bekkers, W., Van de Weerd, I., Spruit, M., & Brinkkemper, S. (2010). A framework
for process improvement in software product management. Proceedings of the
European Conference on Software Process Improvement, Spain, 1-12.

Berner, S., Weber, R., & Keller, R. K. (2005). Observations and lessons learned from
automated testing. Proceedings of the international Conference on Software
Engineering, St. Louis, 571-579.

Berner, S., Weber, R., & Keller, R. K. (2014). Agile in distress: Architecture
to the rescue. Proceedings of the international Conference on Agile Software

123

Development, Rome, 43-57.
Bjork, A. (2015). Scaling Agile across the enterprise. Retrieved from http://

stories.visualstudio.com/scaling-agile-across-the-enterprise/.

Bock, A., Kattenstroth, H., & Overbeek, S. (2014). Towards a modeling method for
supporting the management of organizational decision processes. Proceedings
of modellierung, Wien, 49–64.

Boehm, B. W. (1988). A spiral model of software development and enhancement.
Computer , 21 (5), 61-72.

Borjesson, E., & Feldt, R. (2012). Automated system testing using visual gui testing
tools: A comparative study in industry. Proceedings of the Fifth International
Conference on erification and Validation, Canada, 350-359.

Bosch, J. (2014). Continuous software engineering. Switzerland: Springer.
Campbell, G., & Papapetrou, P. P. (2013). Sonarqube in action. Greenwich: Man-

ning Publications Co.
Capgemini. (2015). DevOps - The Future of Application Lifecy-

cle Automation [White paper]. Retrieved February 14, 2017, from
https://www.capgemini.com/resource-file-access/resource/pdf/

devops pov 2015-12-18 final.pdf.
Capodieci, A., Mainetti, L., & Manco, L. (2014). A Case Study to Enable and Mon-

itor Real IT Companies Migrating from Waterfall to Agile. Proceedings of the
14th international conference on Computational Science and Its Applications-
ICCSA 2014, Guimarães, 119-134.

Centric. (2016a). DevOps - 2016 - Centric Assessment Tool - 1. Unpublished
internal document.

Centric. (2016b). DevOps - 2016 - Centric Assessment Tool - 2. Unpublished
internal document.

Centric. (2016c). DevOps - 2016 - Centric Assessment Tool - 3. Unpublished
internal document.

Chen, L. (2015). Continuous delivery: Huge benefits, but challenges too. IEEE
Software, 32 (2), 50–54.

Choudhary, V. (2007). Software as a service: Implications for investment in software
development. Proceedings of the 40th Annual Hawaii International Conference
on System Sciences, Hawaii, 209a-209a.

Claps, G. G., Svensson, R. B., & Aurum, A. (2015). On the journey to continuous
deployment: Technical and social challenges along the way. Information and
Software technology , 57 , 21–31.

Constantinescu, R., & Iacob, I. M. (2007). Capability maturity model integration.
Journal of Applied Quantitative Methods , 2 (1), 31–37.

Davis, J., & Daniels, K. (2016). Effective devops: Building a culture of collaboration,
affinity and tooling at scale. CA: O’Reilly media.

Derniame, J.-C., Kaba, B. A., & Wastell, D. (2006). Software process: principles,
methodology, and technology. Berlin: Springer.

Dijkstra, O. (2013). Extending the agile development discipline to deployment: The
need for a holistic approach (master’s thesis). Utrecht University, Utrecht.

Dooley, P. (2015). The intersection of Devops and ITIL [White paper]. Retrieved
February 15, 2017, from https://www.globalknowledge.net/mea-shared

124

-content/documents/645372/1077294/1077301.
Durham, U. (2009, April 3). Template for a Case Study Protocol. Retrieved

February 14, 2017 from https://community.dur.ac.uk/ebse/resources/

templates/.
Dyck, A., Penners, R., & Lichter, H. (2015). Towards definitions for release engineer-

ing and devops. Proceedings of the Third International Workshop on Release
Engineering, Florence, 3-3.

Ebert, C., Gallardo, G., Hernantes, J., & Serrano, N. (2016). Devops. IEEE
Software, 33 (3), 94–100.

Economou, F., Hoblitt, J. C., & Norris, P. (2014). Your data is your dogfood:
DevOps in the astronomical observatory. Retrieved from https://pdfs

.semanticscholar.org/092d/2a9c05f7ff4fe056fc5b03e63894bc8b43d7

.pdf.

Erder, M., & Pureur, P. (2015). Continuous architecture: Sustainable architecture
in an agile and cloud-centric world. Waltham: Morgan Kaufmann.

Erich, F., Amrit, C., & Daneva, M. (2014). Cooperation between software develop-
ment and operations: a literature review. Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software Engineering and Measure-
ment, Torino.

Fagerholm, F., Guinea, A. S., Mäenpää, H., & Münch, J. (2017). The right model for
continuous experimentation. Journal of Systems and Software, 123 , 292–305.

Faghri, F., Bazarbayev, S., Overholt, M., Farivar, R., Campbell, R. H., & Sanders,
W. H. (2012). Failure scenario as a service (FSaaS) for Hadoop clusters.
Proceedings of the Workshop on Secure and Dependable Middleware for Cloud
Monitoring and Management, Canada, 5.

Familiar, B. (2015). Microservices, iot, and azure: Leveraging devops and microser-
vice architecture to deliver saas solutions. New York: Apress.

Fitzgerald, B., & Stol, K.-J. (2014). Continuous software engineering and beyond:
trends and challenges. Proceedings of the 1st International Workshop on Rapid
Continuous Software Engineering, Hyderabad, 1-9.

Fitzgerald, B., & Stol, K.-J. (2017). Continuous software engineering: A roadmap
and agenda. Journal of Systems and Software, 123 , 176–189.

Fowler, M. (2006, May 1). Continuous Integration [Web
log post]. Retrieved February 15, 2017 from https://www

.martinfowler.com/articles/continuousIntegration.html\

#EveryoneCommitsToTheMainlineEveryDay.
Fowler, M. (2013, May 30). ContinuousDelivery [Web log post]. Retrieved Febru-

ary 15, 2017 from https://martinfowler.com/bliki/ContinuousDelivery

.html.
Grajek, S., & Reinitz, B. T. (2015). Trend Watch 2015: Influential IT Directions

in Higher Education. Retrieved from: https://library.educause.edu/~/

media/files/library/2015/1/ers1502tr.pdf.

Gruver, G., & Mouser, T. (2015). Leading the transformation: Applying agile and
devops principles at scale. Portland: IT Revolution.

Guckenheimer, S. (2015). Our journey to Cloud Cadence, lessons learned at Mi-
crosoft Developer Division [White paper]. Retrieved February 15, 2017, from

125

https://www.microsoft.com/en-us/download/details.aspx?id=46920.
Guckenheimer, S. (2017, January 25). Our journey to Cloud Cadence, lessons

learned at Microsoft Developer Division [Web log post]. Retrieved February 15,
2017 from https://www.visualstudio.com/en-us/articles/devopsmsft/

devdiv-transformation#remediate-at-root-cause.
Haley, T. J. (1996). Software process improvement at raytheon. IEEE software,

13 (6), 33.
Hall, R. S., Heimbigner, D., Van Der Hoek, A., & Wolf, A. L. (1997). An architec-

ture for post-development configuration management in a wide-area network.
Proceedings of the international conference on distributed Computing Systems,
Baltimore, 269-278.

Heitlager, I., Jansen, S., Helms, R., & Brinkkemper, S. (2006). Understanding the
dynamics of product software development using the concept of coevolution.
Proceedings of the international workshop on Software Evolvability, Philadel-
phia, 16-22.

Herden, A., Farias, P. P. M., & Albuquerque, A. B. (2016). An Agile Approach
to Improve Process-Oriented Software Development. Proceedings of the 5th
Computer Science On-line Conference, Switzerland, 413-424.

Hermanns, J., & Steffens, A. (2015). The current state of ‘infrastructure as code’and
how it changes the software development process. Full-scale Software Engi-
neering , 19.

Hevner, v. A., March, S. T., Park, J., & Ram, S. (2004). Design science in informa-
tion systems research. MIS quarterly , 28 (1), 75-105.

Humble, J., & Farley, D. (2010). Continuous delivery: reliable software releases
through build, test, and deployment automation. Boston: Pearson Education.

Humble, J., Molesky, J., & O’Reilly, B. (2014). Lean enterprise: How high perfor-
mance organizations innovate at scale. CA: O’Reilly Media, Inc.

Hussaini, S. W. (2015). A systemic approach to re-inforce development and oper-
ations functions in delivering an organizational program. Procedia Computer
Science, 61 , 261–266.

Hüttermann, M. (2012). Devops for developers. New York: Apress.
Iden, J., Tessem, B., & Päivärinta, T. (2011). Problems in the interplay of devel-

opment and it operations in system development projects: A delphi study of
norwegian it experts. Information and Software Technology , 53 (4), 394-406.

Inbar, S., Sayers, Y., Pearl, G., Schitzer, E., Shufer, I., Kogan, O., & Ravi, S.
(2013, April 4). DevOps and OpsDev: How Maturity Model Works [Web log
post]. Retrieved February 14, 2017 from https://community.hpe.com/t5/

All-About-the-Apps/DevOps-and-OpsDev-How-Maturity-Model-Works/

ba-p/6042901#.WKM TlUrKpo.
Jöngren, C. (2008). Automated integration testing: An evaluation of cruisecontrol.

net. (master’s thesis). Royal institute of Technology, Stockholm.
Kabaale, E., Amulen, C., & Kituyi, G. (2014). Validation of a systematic approach

to requirements engineering process improvement in smes in a design science
framework. International Journal of Computer Applications , 108 (6), 7-10.

Kajornboon, A. B. (2005). Using interviews as research instruments. E-journal for
Research Teachers , 2 (1), 1-10.

126

Karlesky, M., & Vander Voord, M. (2008). Agile project management. ESC ,
247 (267), 4.

Khomh, F., Dhaliwal, T., Zou, Y., & Adams, B. (2012). Do faster releases improve
software quality? an empirical case study of mozilla firefox. Proceedings of
the 9th IEEE Working Conference on Mining Software Repositories (MSR),
Switzerland, 179-188.

Kim, G. (2013). Top 11 Things You Need To Know About DevOps [White paper].
Retrieved February 14, 2017, from http://www.bogotobogo.com/DevOps/

Puppet/images/DevOps/Top11ThingsToKnowAboutDevOps.pdf.
Kim, G., Behr, K., & Spafford, G. (2014). The phoenix project: A novel about it,

devops, and helping your business win. Portland: IT Revolution.
Kim, G., Humble, J., Debois, P., Allspaw, J., & Willis, J. (2016). The devops

handbook. Portland: IT Revolution Press.
Kvale, S. (1996). Interviews: An introduction to qualitative research interviewing.

Thousand Oaks, CA: Sage.
Laan, S. (2013). It infrastructure architecture-infrastructure building blocks and

concepts second edition. Raleigh: Lulu press.
Larsson, M., & Crnkovic, I. (1999). New challenges for configuration management.

Proceedings of the international Symposium on Software Configuration Man-
agement, London, 232-243.

Lawton, G. (2008). Developing software online with platform-as-a-service technol-
ogy. Computer , 41 (6), 13-15.

Louridas, P. (2006). Static code analysis. IEEE Software, 23 (4), 58–61.
Lwakatare, L. E., Kuvaja, P., & Oivo, M. (2016). An Exploratory Study of DevOps

Extending the Dimensions of DevOps with Practices. Proceedings of the the
Eleventh International Conference on Software Engineering Advances, Rome,
91-99.

March, S. T., & Smith, G. F. (1995). Design and natural science research on
information technology. Decision support systems , 15 (4), 251-266.

Meissner, R., & Junghanns, K. (2016). Using DevOps Principles to Continuously
Monitor RDF Data Quality. Proceedings of the 12th International Conference
on Semantic Systems, Leipzig, 189-192.

Mohamed, S. I. (2015). Devops shifting software engineering strategy value based
perspective. International Journal of Computer Engineering , 17 (2), 51–57.

Moss-Bolaños, A. (2016, March 21). The Essential DevOps Terms You Need to Know
[Web log post]. Retrieved February 14, 2017 from https://blog.xebialabs

.com/2016/03/21/essential-devops-terms/.
Narayan, S. (2015). Agile it organization design: for digital transformation and

continuous delivery. Boston: Addison-Wesley Professional.
Nelson-Smith, S. (2013). Test-driven infrastructure with chef: bring behavior driven

development to infrastructure as code. Sebastopol: O’Reilly media.
Nybom, K., Smeds, J., & Porres, I. (2015). Towards architecting for continuous de-

livery. Proceedings of the working conference on Software Architecture, Croatia,
131-134.

Nybom, K., Smeds, J., & Porres, I. (2016). On the Impact of Mixing Responsibilities
Between Devs and Ops. Proceedings of the international conference on Agile

127

Software Development, Edinburgh, 131-143.
Oates, B. J. (2005). Researching information systems and computing. London:

Sage.
Olausson, M., & Ehn, J. (2015). Continuous delivery with visual studio alm 2015.

New York: Apress.
Olsson, H. H., & Bosch, J. (2016). From requirements to continuous re-prioritization

of hypotheses. Proceedings of the International Workshop on Continuous Soft-
ware Evolution and Delivery, Austin, 63-69.

Onwuegbuzie, A. J., Leech, N. L., & Collins, K. M. (2012). Qualitative analysis
techniques for the review of the literature. The qualitative report , 17 (28), 1.

Orzen, M., & Paider, T. (2016). The lean it field guide: A roadmap for your
transformation. Florida: CRC press.

Pahl, C., Xiong, H., & Walshe, R. (2013). A comparison of on-premise to cloud
migration approaches. Proceedings of the European Conference on Service-
Oriented and Cloud Computing, Malaga, 212-226.

Patwardhan, B. (2014). Software engineering [White paper]. Retrieved February 15,
2017, from http://www.csi-india.org/communications/CSIC%20August%

202014.pdf.
Phillips, S., Sillito, J., & Walker, R. (2011). Branching and merging: an investiga-

tion into current version control practices. Proceedings of the 4th International
Workshop on Cooperative and Human Aspects of Software Engineering, Hon-
olulu, 9-15.

Plwakatare, L. E., Kuvaja, P., & Oivo, M. (2015). Dimensions of DevOps. Proceed-
ings of the international Conference on Agile Software Development, Tallinn,
212-217.

Potgieter, B., Botha, J., & Lew, C. (2005). Evidence that use of the ITIL framework
is effective. Proceedings of the 18th Annual conference on the national advisory
committee on computing qualifications, Tauranga, 160-167.

Rahman, A. A. U., Helms, E., Williams, L., & Parnin, C. (2015). Synthesizing
continuous deployment practices used in software development. Proceedings of
the Agile Conference, Lisbon, 1-10.

Ravichandran, A., Taylor, K., & Waterhouse, P. (2016). Devops for digital leaders:
Reignite business with a modern devops-enabled software factory. New York:
Apress.

Riungu-Kalliosaari, L., Mäkinen, S., Lwakatare, L. E., Tiihonen, J., & Männistö, T.
(2016). DevOps Adoption Benefits and Challenges in Practice: A Case Study.
Proceedings of the international conference on Product-Focused Software Pro-
cess Improvement, Norway, 590-597.

Rong, G., Zhang, H., & Shao, D. (2016). CMMI guided process improvement for
DevOps projects: an exploratory case study. Proceedings of the International
Workshop on Software and Systems Process, Austin, 76-85.

Rossberg, J. (2014). Beginning application lifecycle management. New York:
Apress.

SAFe. (2012). Mixing Agile and Waterfall Development in the Scaled Agile Frame-
work. Retrieved from http://www.scaledagileframework.com/mixing

-agile-and-waterfall-development-in-the-scaled-agile-framework/

128

.

SAFe. (2016). Communities of practice. Retrieved from http://www

.scaledagileframework.com/communities-of-practice/.

Saldaña, J. (2015). The coding manual for qualitative researchers. Thousand Oaks,
CA: Sage.

Shahin, M., Babar, M. A., & Zhu, L. (2014). CloudWave: Where adaptive cloud
management meets DevOps. Proceedings of the IEEE Symposium on Comput-
ers and Communication, Madeira, 1-6.

Shahin, M., Babar, M. A., & Zhu, L. (2016). The Intersection of Continuous Deploy-
ment and Architecting Process: Practitioners’ Perspectives. Proceedings of the
10th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, Ciudad Real, 44.

Sherwood, R. (2014). Sdn is devops for networking. login: the magazine of USENIX
& SAGE , 39 (2), 34–37.

Smeds, J., Nybom, K., & Porres, I. (2015). DevOps: a definition and perceived
adoption impediments. Proceedings of the international Conference on Agile
Software Development, Helsinki, 166-177.

Sommerville, I., & Sawyer, P. (1997). Requirements engineering: a good practice
guide. New York: John Wiley & Sons, Inc.

Steinberg, R. (2016). High velocity itsm: Agile it service management for rapid
change in a world of devops, lean it and cloud computing. Bloomington: Traf-
ford publishing.

Sumrell, M. (2007). From waterfall to agile-how does a QA team transition. Pro-
ceedings of the conference on agile, Denmark, 291-295.

Sun, W., Zhang, X., Guo, C. J., Sun, P., & Su, H. (2008). Software as a service:
Configuration and customization perspectives. Proceedings of the Congress on
Services Part II, Washington, 15-25.

Swartout, P. (2014). Continuous delivery and devops–a quickstart guide. Birming-
ham, UK: Packt Publishing Ltd.

Sydor, M. (2014). Beyond Deployment Automation: Realizing De-
vOps Metrics and Collaboration through APM Visibility [White
paper]. Retrieved February 15, 2017, from http://s3.amazonaws

.com/academia.edu.documents/36336664/beyond-deployment

-automation.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=

1487151998&Signature=nUfLkc36jLLnkB82ZyiowluKdgo%3D&response

-content-disposition=inline%3B%20filename%3DBeyond Deployment

Automation Realizing D.pdf.
Trienekens, J. (2015). Towards a Metrics Model for DevOps: results of a case study

in an industrial company. Proceedings of the First International Conference
on Fundamentals and Advances in Software Systems Integration, Italy, 1-6.

Tseitlin, A. (2013). The antifragile organization. Communications of the ACM ,
56 (8), 40–44.

Van de Weerd, I., Bekkers, W., & Brinkkemper, S. (2010). Developing a Matu-
rity Matrix for Software Product Management. Proceedings of ICSOB 2010,
LNBIP 51, Finland, 76-89.

Van de Weerd, I., & Brinkkemper, S. (2008). Meta-modeling for situational analysis

129

and design methods. Handbook of research on modern systems analysis and
design technologies and applications , 35 , 38-58.

Van Gennip, O. (2016). Kerstborrel. Unpublished internal document, Centric.
Van Steenbergen, M., Bos, R., Brinkkemper, S., Van de Weerd, I., & Bekkers, W.

(2013). Improving is functions step by step: The use of focus area maturity
models. Scandinavian Journal of Information Systems , 25 (2), 35–56.

Van Steenbergen, M., Schipper, J., Bos, R., & Brinkkemper, S. (2010). The dynamic
architecture maturity matrix: Instrument analysis and refinement. Proceedings
of the ICSOC/ServiceWave Workshops, Stockholm, 48-61.

Van Vliet, R., & Jagroep, E. (2016). Centric its intenral DevOps competence model,
Unpublished internal document, Centric.

Virmani, M. (2015). Understanding DevOps & bridging the gap from continu-
ous integration to continuous delivery. Proceedings of the fifth International
Conference on Innovative Computing Technology, Galcia, 78-82.

Vulpe, D. (2015). HOW WE DID IT! 100+ continuous deployments per day while
having coffee., Unpublished internal document, Centric.

Wahaballa, A., Wahballa, O., Abdellatief, M., Xiong, H., & Qin, Z. (2015). Toward
unified DevOps model. Proceedings of the international Conference on software
Engineering and Service Science, Beijing, 211-214.

Waller, J., Ehmke, N., & Hasselbring, W. (2015). Including performance bench-
marks into continuous integration to enable devops. ACM SIGSOFT Software
Engineering Notes , 40 (2), 1-4.

Walls, M. (2013). Building a devops culture. CA: O’Reilly Media, Inc.
Ward, P., & Zhou, H. (2006). Impact of information technology integration

and lean/just-in-time practices on lead-time performance. Decision Sciences ,
37 (2), 177–203.

Waterhouse, P. (2015). DevOps Practitioner Series: “Metrics That Mat-
ter”—Developing and Tracking Key Indicators of High-Performance IT
[White paper]. Retrieved February 15, 2017, from http://www3.ca.com/~/

media/Files/whitepapers/devops-practitioner-series-metrics-that

-matter-developing-and-tracking-key-indicators.pdf.
Westfechtel, B., & Conradi, R. (2003). Software architecture and software config-

uration management. Proceedings of the international workshop on Software
Configuration Management, Portland, 24-39.

Wettinger, J. (2012). Concepts for integrating devops methodologies with model-
driven cloud management based on tosca. (master’s thesis). University of
Stuttgart, Stuttgart.

Wettinger, J., Andrikopoulos, V., & Leymann, F. (2015). Enabling DevOps collab-
oration and continuous delivery using diverse application environments. Pro-
ceedings of the international Conferences” On the Move to Meaningful Internet
Systems”, Rhodes, 348-358.

Wettinger, J., Breitenbücher, U., & Leymann, F. (2014a). Compensation-based vs.
convergent deployment automation for services operated in the cloud. Proceed-
ings of the international Conference on Service-Oriented Computing, Paris,
336-350.

Wettinger, J., Breitenbücher, U., & Leymann, F. (2014b). Standards-based De-

130

vOps automation and integration using TOSCA. Proceedings of the 2014
IEEE/ACM 7th International Conference on Utility and Cloud Computing,
London, 59-68.

Wieringa, R. (2014). Design science methodology for information systems and
software engineering. Berlin: Springer.

Willcocks, L. P., Sauer, C., & Lacity, M. C. (2016). Enacting research methods in
information systems (Vol. 1). Chicago: Springer.

Yin, R. K. (2003). Case study research: Design and methods. Thousand Oaks, CA:
Sage publications.

Yin, R. K. (2013). Case study research: Design and methods. Thousand Oaks, CA:
Sage publications.

Zwieback, D. (2014). Antifragile systems and teams. CA: O’Reilly Media, Inc.

131

Appendix A: Interview protocol and in-
formed consent

Interview protocol

Introduction

My name is Rico de Feijter and I am following the Master in Business Informatics
that is taught at Utrecht University. Currently, I am doing my research project at
Centric, a Dutch product software organization (PSO). My thesis covers the topic
“implementing DevOps into PSOs” and, in collaboration with Centric, I aim to
make a DevOps competence model that includes aspects that PSOs should consider
when implementing DevOps. Based on this DevOps competence model, I plan to
make a DevOps maturity model that helps PSOs incrementally implement DevOps
in a stepwise way. A first version of a DevOps competence model that will be used
to build further upon during this research and is made available by Centric, is shown
in figure 1. As can be seen, this first version of the model already gives a broad
overview of the aspects involved in DevOps. The second version, i.e. the DevOps
competence model, will adhere to the same structure as the first version presented
in figure 1, which in turn follows the structure of the SPM competence model from
Utrecht University.

The interview will take 60 to 90 minutes and during this interview, questions will be
asked regarding your organization and DevOps drivers and practices, since I would
like to have an insight into your organization’s DevOps practices and how these
relate to the DevOps drivers found in literature and to your organization’s DevOps
drivers. Subsequently, the drivers and practices elicited through this interview can
form input to the artifacts to be made (i.e. the DevOps competence model and the
DevOps maturity model).

132

Market

Conditions and supporting processes

Scrum

Architecture Infrastructure
& tooling

Standards &
non-functional
requirements

Ceremonies Admini
strations

Alignment &
integration

Requirements
prioritization

Scope change
management Build validation

Customers

Partners

Company board

Sales

Marketing

Research &
innovation

Development

Support

Services

External
stakeholders

Internal
stakeholders

Delivery chain

Software as as ervice / Hosting

Managed
services

Technical
requirements Deployment

Continuous
processing

Test
automation

Measuring &
monitoring

Figure 1: Internal DevOps competence model from Van Vliet and Jagroep (2016)

General questions

What department are you in?

What is your function?

How long have you been working in your current function?

How long have you been working for this organization?

DevOps questions

1. DevOps definition
It seems that there is no formal definition of DevOps, even though the term
has already been around since 2009. Therefore, I would like to know how your
organization defines DevOps.

1.1. What does the term “DevOps” mean to you?

Having heard your interpretation of DevOps, I would like to move on to the
drivers and practices that origin from practice.

2. Own drivers and practices

2.1. What are your/your organization’s DevOps drivers? What practices have
been implemented and/or are planned to be implemented to fulfill these
drivers?

133

Now, I would like to move on to the DevOps drivers that origin from literature
on DevOps. For each of these drivers, I will ask questions about the corre-
sponding practices that you have adopted over time or plan to adopt in the
future.

3. Driver: create a culture of collaboration
DevOps aims to foster the creation of a culture of collaboration, where com-
munication and knowledge sharing between developers, operations and other
stakeholders happens continuously and the wall of confusion (i.e. the inability
of the development and operations teams to communicate to realize a com-
mon goal, because of different tools, approaches and traditionally different
goals where development strives for change and ops strives for stability) is
brought down.

3.1. Do you recognize the “wall of confusion”? If so, what form does this
“wall of confusion” take in your organization?

3.2. What practices have been implemented over time to diminish this wall of
confusion?

3.3. Considering the current situation, what future practices are planned to
be implemented to bring down the wall of confusion?

In a culture of collaboration, DevOps also aims to make trust and respect
thrive, thereby counteracting a culture that is full of heroes (i.e. people that
work long hours and take on a lot of work for their own recognition, while
risking a burnout), blame and fear, where people are blamed and/or punished
for errors.

3.4. What does a culture of trust and respect mean to you?

3.5. What practices have been implemented over time to maintain a culture
of trust and respect?

3.6. Considering your organization’s current situation, what future practices
are planned to be implemented to maintain a culture of trust and respect?

4. Driver: be more agile and have processes better aligned (later on
called ”Agility and process alignment”)
Apart from creating a culture of collaboration, DevOps drives a better align-
ment between development, operations and other departments involved in the
software development process to create a lean end-to-end process (where activi-
ties that do not add any value are diminished). Examples of these departments
include QA, software product management (SPM) and information security.

4.1. When looking at SPM, we perceive that SPM consists of the following

134

business functions (according to the SPM competence model): portfo-
lio management, product planning, release planning, requirements man-
agement. Are you familiar with these business functions? If so, what
practices have been implemented to align these business functions with
DevOps?

4.2. What future practices are planned to be implemented to achieve a better
alignment between DevOps and SPM?

4.3. What other departments do you consider to be involved in the software
development process?

4.4. What practices have been implemented over time to achieve better align-
ment between these departments in order to deploy faster and be more
agile towards the customer?

4.5. Considering the current situation, what future practices are planned to
be implemented to achieve better alignment between these departments
in order to deploy faster and be more agile towards the customer?

5. Driver: automation DevOps is also known to be an enabler of automation.
An example of this is automating the deployment pipeline to reduce cycle times
and enable continuous deployment of high quality software, where continuous
deployment means “the continuous deployment of changes, which pass the
automated tests, to production” and should not be confused with continuous
delivery, which entails making sure that changes can be put to production at
any time.

5.1. What processes, that are part of the software development process, are
automated?

5.2. What automation practices have been implemented to automate these
processes?

5.3. Considering the current situation, what future automation practices are
planned to be implemented to automate these processes?

6. Driver: monitoring and measurement (“continuous improvement”)
To enable continuous improvement, DevOps suggests to monitor processes and
measure them against metrics. These processes can be interpreted broadly and
could reside at business, technical level and cultural level. For the business
(i.e. departments involved in software delivery at business level), measuring
and monitoring processes such as the average cycle time of a feature could be
interesting. For development and operations, on the other hand, monitoring
and measuring more technical processes such as resource consumption could be
of interest. Measuring and monitoring processes leads to shorter feedback loops

135

between departments involved in DevOps, so that corrections to software can
be made continuously to maintain customer satisfaction and business value.
Next to that, culture should be monitored and measured in order to have all
aspects of DevOps covered.

6.1. What practices have been implemented to measure and monitor a culture
of collaboration and sharing?

6.2. Considering the current situation, what future practices are planned to
be implemented to monitor and measure a culture of collaboration?

6.3. What practices have been implemented to measure and monitor processes
of interest to the departments involved in DevOps?

6.4. Considering your organization’s current situation, what future practices
are planned to be implemented to measure and monitor processes of in-
terest to the departments involved DevOps?

7. Driver: development and deployment of cloud based applications
As turns out from literature, DevOps is often associated with the cloud. An
example of this is the relation between DevOps and Software as a Service. In
literature the relation between these two is, for example, made clear by stating
that automated deployment processes are preferred in order for services to be
deployed in the cloud.

7.1. How do you perceive the relationship between DevOps and the cloud?

7.2. What DevOps practices have been implemented to develop and deploy
cloud based applications?

7.3. Considering your organization’s current situation, what future DevOps
practices are planned to be implemented to develop and deploy cloud
based applications?

Closure

I want to thank you for your time and for providing me with the information needed
for this research project. After I have completed my thesis, I will send it to you.

136

Informed consent

In the interest of this research project, I would like to conduct an interview on
DevOps in your organization to gain an understanding of how DevOps is perceived
and adopted in practice. In particular, I would like to have an insight into the
DevOps drivers and practices from your organization and how these practices relate
to the drivers from literature. The interview data, which emerges from this interview,
can subsequently be used, together with literature, to create a DevOps competence
model and a DevOps maturity model. The former will show the aspects a PSO
should take into account to implement DevOps, while the latter will incorporate a
stepwise path that a PSO can follow to incrementally implement DevOps. Both
of the aforementioned outcomes will be put available for use. As a result, your
organization can leverage them in the journey to become more DevOps mature.

All information gathered during the interview will be recorded and treated with
respect and will only be used for scientific purposes. In addition, it is important
to note that the research is conducted at Centric. However, the transcript and
audio file of this interview will be held confidential and will not be shared with
Centric or any other organization. Also, the audio file will be deleted at the end of
this research. Further, I do not intend to inflict any harm and you are allowed to
stop the interview at any time, if you feel uncomfortable, since participating in the
interview is completely voluntary. Moreover, the interview takes 60 to 90 minutes.
If I notice that we tend to run out of time, I might interrupt you and move on to the
next question. To obtain informed consent and proceed with the interview, I would
like you to fill in the gaps below. Thank you for participating in this research.

Participant

Name:
Signature:

Researcher

Date:
Time:
Location:

137

Appendix B: Coding scheme

Interviews (during iv-10 the set of drivers and capabilities from iv-9 were validated
and extra information was yielded during the iv-10 interview)

Code APA reference
iv-1 (intervieweeA, personal communica-

tion, August 17, 2016)
iv-2 (IntervieweeB, personal communica-

tion, August 18, 2016)
iv-3 (IntervieweeC, personal communica-

tion, August 23, 2016)
iv-4 (IntervieweeD, personal communica-

tion, August 23, 2016)
(IntervieweeE, personal communica-
tion, August 23, 2016)

iv-5 (IntervieweeF, personal communica-
tion, August 24, 2016)

iv-6 (IntervieweeG, personal communica-
tion, September 2, 2016)

iv-7 (IntervieweeH, personal communica-
tion, September 12, 2016)

iv-8 (IntervieweeI, personal communication,
September 13, 2016)

iv-9 (IntervieweeJ, personal communica-
tion, September 13, 2016) (Inter-
vieweeK, personal communication,
September 13, 2016)

iv-10 (IntervieweeJ, personal communica-
tion, September 30, 2016)
(IntervieweeK, personal communica-
tion, September 30, 2016)

iv-11 (IntervieweeL, personal communica-
tion, September 22, 2016)

iv-12 (IntervieweeM, personal communica-
tion, September 27, 2016)

iv-13 (IntervieweeN, personal communica-
tion, September 28, 2016)

iv-14 (IntervieweeO, personal communica-
tion, October, 17, 2016)

138

iv-15 (IntervieweeP, personal communica-
tion, October 20, 2016)

Workshop validation (occurred with all seven participants in one session)

Code APA reference
w-v-1 (WorkshopExpertA, personal commu-

nication, October 25, 2016)
w-v-2 (WorkshopExpertB, personal commu-

nication, October 25, 2016)
w-v-3 (WorkshopExpertC, personal commu-

nication, October 25, 2016)
w-v-4 (WorkshopExpertD, personal commu-

nication, October 25, 2016)
w-v-5 (WorkshopExpertE, personal commu-

nication, October 25, 2016)
w-v-6 (WorkshopExpertF, personal commu-

nication, October 25, 2016)
w-v-7 (WorkshopExpertG, personal commu-

nication, October 25, 2016)

Follow up validation sessions (occurred with both participants various sessions)

Code APA reference
f-v-1 (WorkshopExpetA, personal communi-

cation, november 10th, 2016)(Work-
shopExpetB, personal communication,
november 10th, 2016)

f-v-2 (WorkshopExpetA, personal communi-
cation, november 15th, 2016)(Work-
shopExpetB, personal communication,
november 15th, 2016)

f-v-3 (WorkshopExpetA, personal communi-
cation, november 22th, 2016)(Work-
shopExpetB, personal communication,
november 22th, 2016)

f-v-4 (WorkshopExpetA, personal communi-
cation, december 1st, 2016)(Workshop-
ExpetB, personal communication, de-
cember 1st, 2016)

139

Second validation round with interviewees (occurred with each interviewee sepa-
rately)

Code APA reference
iv-v-3 (IntervieweeC, personal communica-

tion, December 13, 2016)
iv-v-8 (IntervieweeI, personal communication,

December 15, 2016)
iv-v-2 (IntervieweeB, personal communica-

tion, December 15, 2016)
iv-v-12 (IntervieweeM, personal communica-

tion, December 20, 2016)
iv-v-9 (IntervieweeK, personal communica-

tion, December 21, 2016)
iv-v-1 (IntervieweeA, personal communica-

tion, December 28, 2016)
iv-v-6 (IntervieweeG, personal communica-

tion, December 30, 2016)

Second validation round with experts (occurred with each expert separately. Note
that exp-v-1 and exp-v-2 represent the same expert as the validation session was
conducted in two stages)

Code APA reference
exp-v-1 (MaturityExpertA, personal communi-

cation, December 19, 2016)
exp-v-2 (MaturityExpertA, personal communi-

cation, December 27, 2016)
exp-v-3 (MaturityExpertB, personal communi-

cation, December 23, 2016)
exp-v-4 (MaturityExpertC, personal communi-

cation, December 23, 2016)
exp-v-5 (MaturityExpertD, personal communi-

cation, December 29, 2016)

140

Appendix C: Previous perspectives, focus
areas and capabilities

This appendix presents the initial perspectives, focus areas and capabilities and their
counterparts after processing first validation round input.

Continuous improvement

This perspective was deleted after processing workshop validation input (w-v-1, w-
v-4, f-v-2) and contents from the capabilities were processed in other focus areas
residing in the DevOps competence model.

Culture of collaboration

A. Intuitive culture of collaboration monitoring
Action: collaboration between individuals and teams is monitored and measured
intuitively.
References: iv-5; iv-6.

B. formal culture of collaboration monitoring
Action: collaboration between individuals and teams is monitored and measured
periodically using instruments (e.g. skill matrices, peer reviews) and knowledge
sharing is monitored and measured (e.g. a metric could be the number of contri-
butions to a wiki).
References: Davis and Daniels (2016);Waterhouse (2015)

Process

A. Ceremonies
Action: ceremonies such as standups and retrospectives are held including product
managers, testers etc. with the aim to improve the process.
References: References: iv-3;iv-2;iv-14;iv-5

B. Dev and Ops process monitoring

141

Action: development and operations processes are monitored and measured. Ex-
amples of metrics are average velocity and amount of standard changes and op-
erations is involved in ceremonies.
References: iv-1;iv-9;Kim et al. (2016);Van Vliet and Jagroep (2016)

C. DevOps process monitoring
Action: the holistic process from product management up to and including op-
erations and feedback loops therein are monitored and measured. Examples of
metrics include: lead time of a feature, maximum time between customer feed-
back.
References: iv-5;Kim et al. (2016); Trienekens (2015)

Product

A. Reactive incident handling
Action: Incident from customers are logged by the helpdesk and are fixed or
communicated to development (in case of incidents that cannot be fixed by oper-
ations).
References: iv-1;Van Vliet and Jagroep (2016)

B. Alerts
Action: development receives alerts when errors occur in an application resulting
in triggering development to take action before the customer is affected.
References: iv-8

C. Proactive monitoring
Action: the behavior of an application is proactively monitored and measured,
while it is running in production, where both development and operations have
insight into this behavior and mutually act on problems before they occur. Fur-
ther, user behavior is monitored and measured from which resulting data is used
to further support the backlog.
References: iv-9;iv-6;iv-15;iv-12;iv-5;iv-8

Quality

A. Dev and Ops manual quality monitoring
Action: development and operations process quality is monitored and measured
manually and periodically (e.g. code quality is monitored through code reviews,
while operations quality is for instance monitored by scorecards to check if the
ITIL procedures still comply with quality norms).
References: Van Vliet and Jagroep (2016);iv-9;iv-2

142

B. Dev and Ops automated quality monitoring
Action: development and operations process quality is monitored and measured
automatically. Examples here are automated code reviews and percentage of code
that is left unused (which takes hard drive space), but tested during integration
tests.
References: iv-5;iv-6;Van Vliet and Jagroep (2016);iv-12;iv-4

C. DevOps automated quality monitoring
Action: Built in quality mechanisms are implemented (test driven development,
a mechanism that detects broken builds etc.) and the holistic process is improved
using techniques such as value stream mapping.
Reference:Kim et al. (2016);iv-12;iv-6

Culture of collaboration

Communication

A. Indirect communication
Action: periodical and direct communication takes place at a more tactical and
strategic level (e.g. between software development managers, product managers,
software and technical architects etc.). At an operational level (e.g. between
development and operations) communication occurs indirectly (e.g. via a software
architect).
Reference:References: iv-4

B. Governance model
Action: a governance model is in place that declares the parties involved, shared
responsibilities, how communication flows and how to mitigate risks among others
before the start of a project.
Reference: iv-13

C. Direct communication
Action: direct communication takes place at an operational level at several points
in time (e.g. between dev and ops).
Reference: iv-13

Changes after processing first validation round input

A. Direct communication
Action: direct communication takes place at an operational level at several points
in time (e.g. between dev and ops).

143

Reference: iv-13;w-v-1;w-v-4

B. Directed communication
Action: communication between IT professionals, among which are dev and ops
professionals, is directed by management while working towards releases.
References: w-v-1;w-v-4

C. Governance model
Action: a governance model is in place that declares the parties involved, shared
responsibilities, how communication flows and how to mitigate risks among others
before the start of a project.
Reference: iv-13;w-v-1;w-v-4

D. Communication improvement
Action: communication among IT professionals and teams is continuous improved
using instruments (e.g. skill matrices, peer reviews) over time.
Reference: Davis and Daniels (2016)w-v-1;w-v-4

Knowledge sharing

A. Centralized knowledge sharing
Action: centralized knowledge sharing facilities are offered and used such as cen-
tral knowledge bases.
Reference: iv-8;Dooley (2015)

B. Active knowledge sharing
Action: knowledge is shared actively among professionals (e.g.an example could
be dev and ops actively sharing knowledge on what impact certain development
solutions have on a virtual machines and on load. Another example is training
that is provided by dev to ops).
Reference: iv-4;iv-6;

C. Communities of practice
Action: communities of practice exist in which knowledge sharing happens among
professionals that share a common interest (for knowledge between developers and
operations on DevOps).
Reference: Davis and Daniels (2016);SAFe (2016)

D. Communities of interest

144

Action: communities of interest exist in which higher level matters are discussed
(e.g. matters regarding communication between teams, governance etc.) and the
responsibility is taken to coordinate COPs.
Reference: Davis and Daniels (2016)

Changes after processing first validation round input

D. knowledge sharing policy
Action: a knowledge sharing policy is present that allows for continuously im-
proving knowledge sharing throughout the organization (e.g. by using knowledge
sharing metrics. A metric could be the number of contributions to a wiki).
Reference: Reference: f-v-2; Waterhouse (2015)

Trust and respect

A. Time to experiment
Action: professionals are given time to experiment to learn new techniques (e.g.
development is given time to transfer to newer techniques).
Reference: iv-8;iv-12;iv-3

B. Culture of trust and respect creation
Action: management creates a culture of trust and respect by acting as a coach
(e.g. by stimulating professionals to communicate with one another).
Reference: iv-12;iv-13

C. Culture of trust and respect maintenance
Action: shared core values are followed by both development and operations to
maintain trust and respect. Examples of these shared core values area working
towards shared goals, transparency.
Reference: Walls (2013);Hüttermann (2012);iv-6

Team organization

A. Cross functional teams excluding ops
Action: teams are present that consist of people on the part of the front-end (e.g.
product owners, designers, developers, testers).
References: iv-1;iv-2

145

B. Cross functional teams including ops
Action: operations are embedded in the team.
References: iv-8;iv-12;iv-13;iv-15

C. Cross functional teams with knowledge overlap
Action: cross functional teams are present including operations in which knowl-
edge overlap is present among team members (i.e. t-shaped professionals).
References: iv-8;iv-12;Kim et al. (2016)

Alignment

A. Partly responsible for products of multiple domains
Action: teams of a business unit are responsible for a part of the process (product
management, development, testing) and is involved in multiple domains (i.e. a
finance unit also develops products for authentication).
References: iv-8

B. End-to-end responsibility for products of one domain
Action: end-to-end responsibility is taken by teams from a business unit for the
whole chain (i.e. from product management up to and including operations) of
the products of a certain domain.
References: iv-8

C. End-to-end responsibility for a part of the product
Action: multiple teams are responsible for a part of a product and work at the
same frequency (i.e. have the same sprint cadence).
References: iv-15

Changes after processing first validation round input

A. Roadmap alignment
Action: alignment with other dependencies is considered at roadmap (i.e. product
planning) level.
References: w-v-1;f-v-2;Bekkers et al. (2010)

B. Release heartbeat alignment
Action: release heartbeats of dependent teams are aligned.
References: iv-15;f-v-2

146

Product, process and quality

Product management related focus areas

Requirements gathering

A. requirements and incident gathering
Action: functional and nonfunctional requirements (e.g.privacy, security, perfor-
mance requirements) and incidents are gathered from internal stakeholders and
customers.
References: Humble & Farley, 2010;iv-8;iv-4;iv-2;iv-14;iv-11, iv-1

B. advanced requirements and incident gathering
Action: functional requirements are gathered using UX techniques (e.g. wire-
frames, prototypes etc.), while non functional requirements are gathered related
to multi-tenancy, monitoring pay-per-use, elasticity, statelessness, modifiability,
deployability etc. are gathered.
References: iv-11;iv-6;Nybom et al., 2015

Prioritization

A. requirements and incident prioritization
Action: functional and nonfunctional requirements and incidents are prioritized
by listening to the loudest voice.
References: iv-11

B. Prioritization involving multiple stakeholders
Action:functional and nonfunctional requirements and incidents are prioritized in
cooperation with stakeholders (e.g. support, sales, development etc.)
References: iv-11;iv-7;iv-4

C. Experimental prioritization
Action: prioritization is also determined by conducting experiments in produc-
tion.
References: Guckenheimer (2015);Olsson and Bosch (2016)

Definition of done

A. Release meetings
Action: release meetings are held in which product management asks development
and test leads if certain criteria, related to the release package, are met, to name
an example.

147

References: iv-11

B. Definition of done
Action: the team is responsible for adhering to a definition of done, which states
that software is done when developers and testers produce functionality that meets
certain criteria (e.g. unit tests are performed etc.)
References: Van Vliet and Jagroep (2016);Karlesky and Vander Voord (2008)

C. definition of done for production
Action: the team is responsible for adhering to a definition of done, which states
that software is done when developers and testers and operations produce and
release functionality that meets certain criteria and are able to demonstrate that
it works in production and continuous to work in production.
Reference: iv-12

Release and validation

A. Detailed release planning
Action: a detailed release planning is made far in advance. Further, functionalities
(new functionalities and bugs) belonging to this release are developed and vali-
dated, while working towards the release, by internal stakeholders and customers
during meetings (e.g. by giving demos).
References: iv-2;iv-9;iv-5

B. Fixed release heartbeat
Action: a fixed release heartbeat is adhered to that yields production ready soft-
ware after an amount of sprints (e.g. after six weeks a release including software
that is production ready is yielded). Each sprint, functionalities are validated by
internal stakeholders and customers on an environment closer to production (for
instance an acceptance environment).
References: iv-6;iv-14

C. Minimum viable products (MVPs)
Action: for large features (e.g. themes) a minimum viable product is gradually
developed into a minimum sellable product during sprints. During this process,
the MVP is validated constantly by internal stakeholders and customers.
Reference: iv-11

D. Gradual release and production validation

148

Action: after each short period (e.g. a sprint of three weeks) functionalities are
gradually released to production and made available to internal stakeholders and
customers in gradual stages. In the process of gradually releasing functionality,
the functionality is validated in production.
Reference: iv-15

Changes after processing first validation round input Release heartbeat

A. Requirements and incidents gathering and prioritization
Action: functional and nonfunctional requirements and incidents are gathered
from and prioritized with internal stakeholders and customers.
Reference: Humble and Farley (2010);iv-8;iv-4;iv-2, iv-14;iv-1;iv-11;iv-6;iv-11;iv-
7;w-v-2;f-v-2

B. Fixed release heartbeat and validation
Action: a fixed release heartbeat is present and validation of functionality occurs
with internal stakeholders and customers by demoing the functionality on a test
or acceptance environment or the like.
Reference: iv-2;iv-6;iv-14,;v-9;w-v-2;f-v-2

C. Production requirements and incident gathering
Action: functional and nonfunctional requirements and incidents are gathered
from production by monitoring the production environment(s).
Reference: iv-12;iv-5;iv-8;w-v-2;f-v-2

D. Gradual release and production validation
Action: functionality is released gradually (e.g. functionality is first released to
internal stakeholders, whereafter it is released to stakeholders that have close
bonds with the organization. Finally, the software is released to end-customers)
and validation of functionality occurs in production.
Reference: iv-15;w-v-2;f-v-2

E. Experiments
Action: experiments are run with slices of features in order to support the pri-
oritization of the contents in the backlog. Such experiments could, for instance,
be run by conducting A/B testing, where two different implementations of a slice
of functionality are set out to groups of customers in order to gather data and
determine what implementation is the best.
Reference: Guckenheimer (2015); Olsson and Bosch (2016);w-v-2;f-v-2

F. Release heartbeat improvement

149

Action: the value stream is continuously improved by mapping the value stream
to identify and eliminate activities that do not add any value, shorten lead times
and shorten the time between feedback moments with the customer.
References: Kim et al. (2016);Trienekens (2015);w-v-2;f-v-2

Shared components

A. Product planning shared components
Action: the use of shared components is considered in the product planning.
Reference: iv-3

B. Shared components availability
Action: all versions of a shared component that are released are made available
for use.
Reference: iv-3

C. Shared components communication
Action: a role (e.g. a release manager/product owner) communicates with other
units when a shared component is released.
Reference: iv-7

Changes after processing first validation round input
The shared components focus area was deleted on the basis of workshop input (w-
v-1)and its contents were processed in the alignment and architecture focus ar-
eas.

Third party components

A. Third party component registration
Action: an administration of 3rd party components is present.
Reference: Van Vliet and Jagroep (2016)

B. Third party maintenance
Action: new releases, patches or security updates of third party components are
regularly checked.
Reference: Van Vliet and Jagroep (2016)

Changes after processing first validation round input
The third party components focus area was deleted on the basis of workshop input
(w-v-1) and its contents were processed in the alignment and architecture focus

150

areas.

Integrate and build

A. Branching/merging strategy
Action: a branching/merging strategy is adhered to.
Reference: Van Vliet and Jagroep (2016)

B. Automated build creation
Action: a software build is created automatically (e.g. by triggering a client or
by running a nightly build).
Reference: iv-2;iv-3;iv-4

C. Continuous build creation
Action: a build is created for each check-in (CI build).
Reference: Humble and Farley (2010)

Changes after processing first validation round Input
Input from (w-v-6) let to splitting the integrate and build focus area in the branch
and merge and build automation focus areas.

Branch and merge
A. Version controlled source code
Action: source code is stored under version control.
Reference: f-v-4;Larsson and Crnkovic (1999);w-v-6

B. Branching/merging strategy
Action: a branching/merging strategy is adhered to.
Reference: Van Vliet and Jagroep (2016);w-v-6

C. Feature toggles
Action: feature toggles are used to make available or disable functionality.
Reference: w-v-6

Build automation
A. Manual build creation
Action: a software build is created manually.
Reference: w-v-6

B. Automated build creation
Action: a software build is created automatically (e.g. by triggering a client or
by running a nightly build).
Reference: iv-2;iv-3;iv-4;w-v-6

151

C. Continuous build creation
Action: a build is created for each check-in (CI build).
Reference: Humble and Farley (2010);w-v-6

Development quality improvement (emerged after processing first valida-
tion round input)

This focus area emerged on the basis of f-v-1.

A. Manual code quality monitoring
Action: manual code quality improvement mechanisms are in place such as pair
programming, code reviews and adherence to code conventions.
References: Van Vliet and Jagroep (2016);iv-2;f-v-1

B. Automated code quality monitoring
Action: code quality is monitored automatically. (e.g. by conducting automated
code reviews in SonarQube).
References: iv-5;iv-6;Van Vliet and Jagroep (2016);iv-4;f-v-1

C. Broken build detection
Action: broken software builds are detected, made visual (e.g. on a dashboard)
and quickly repaired (e.g. within a day).
Reference: iv-6;f-v-1

D. Gated check-in
Action: gated check-ins are performed before committing to a central repository
by merging changes made with the head of the master branch and carrying out
tests to see if the changes do not yield a broken build.
Reference: f-v-1

Testing

A. Manual testing
Action: unit, integration, regression, acceptance and nonfunctional tests such as
performance and security tests are performed manually (e.g. by testers, (services)
consultants, ethical hackers).
Reference: iv-2;iv-7

B. Partly automated testing

152

Action: unit, integration, regression, acceptance and nonfunctional tests such as
performance and security tests are partly automated.
Reference: iv-7;iv-1;iv-5;iv-3, Jöngren (2008);Borjesson and Feldt (2012)

C. Automated testing
Action: unit, integration, regression, acceptance and nonfunctional tests such as
performance and security tests are fully automated.
Reference: Humble and Farley (2010); iv-15;iv-14;iv-5;iv-2;iv-6

Changes after processing first validation round input
A. Systematic testing
Action: unit and acceptance tests are performed manually.
Reference: iv-2;w-v-1;w-v-4

B. Advanced systematic testing
Action: regression and integration tests are performed manually.
Reference: iv-2;iv-7;w-v-1;w-v-4

C. Automated systematic testing
Action: unit tests and nonfunctional tests are performed automatically.
Reference: iv-5;w-v-1;w-v-4

D. Automated advanced systematic testing
Action: regression, chain, nonfunctional and acceptance tests are performed sys-
tematically (e.g. per spring, per release).
Reference: Humble and Farley (2010);iv-14;w-v-1;w-v-4

E. Test driven development
Action: test driven development is performed.
Reference: iv-12;w-v-1;w-v-4

Provisioning and deployment

A. Manual provisioning and deployment
Action: all environments are provisioned manually and deployments occur man-
ually (e.g. by following documentation and installing a release package by hand).
Reference: iv-1;iv-10;Vulpe (2015)

B. Partly automated provisioning and deployment

153

Action: provisioning of and deployments to some environment (e.g. development
and test) occurs automatically (e.g. through a self service mechanism) that en-
sures the environment is automatically provided with the correct configuration
and software.
Reference: iv-2

C. automated provisioning and deployment
Action: provisioning of and deployments to all environments occurs automati-
cally (e.g. through a self service mechanism) that ensures the environment is
automatically provided with the correct configuration and software.
Reference: iv-6

D. automated rollback
Action: an automated rollback procedure (e.g. blue green deployment) is in place
ensuring that it is possible to rollback in case failure occurs during deployment.
Reference: Humble and Farley (2010)

E. continuous delivery
Action: a continuous delivery process is implemented that enables a software
build to be automatically deployed to an acceptance environment, after passing
the automated tests.
References: iv-5;iv-7;Fowler (2013)

F. continuous deployment
Action: each check-in is continuously deployed to production (after passing all
automated tests), where data model changes are also processed and automated
rollback is possible, where data is also brought back to a stable state.
References: iv-12;Humble and Farley (2010);Rahman et al. (2015)

Changes after processing first validation round input.

A. Manual provisioning and deployment
Action: all environments are provisioned manually and deployments occur man-
ually (e.g. by following documentation and installing a release package by hand)
and rollback occurs manually.
Reference: iv-1;iv-10; Vulpe (2015);w-v-4;w-v-3;f-v-4

B. Partly automated provisioning and deployment

154

Action: provisioning of and deployments to some environment (e.g. development
and test) occurs in automated manner (e.g. through a self service mechanism),
where datamodel changes are also processed automatically and rollback is possi-
ble, where data is also brought back into a stable state.
Reference: iv-2;w-v-4;w-v-3;f-v-4

C. Continuous delivery
Action: provisioning of and deployments to all environments (e.g. development
and test) occurs in automated manner (e.g. through a self service mechanism),
where datamodel changes are also processed automatically and rollback is possi-
ble, where data is also brought back into a stable state.
Reference: iv-5;iv-7;Fowler (2006);iv-6;w-v-4;w-v-3;f-v-4

D. Continuous deployment
Action: each check-in is continuously deployed to production (after passing all
automated tests), where data model changes are also processed and automated
rollback is possible, where data is also brought back to a stable state.
References: iv-12;Humble and Farley (2010);Rahman et al. (2015);w-v-4;w-v-3;f-
v-4

Product quality improvement (emerged after processing first validation
round input)

A. Reactive incident handling
Action: customer incidents are logged and repaired by interdisciplinary profes-
sionals among which are dev and ops.
References: iv-2;Van Vliet and Jagroep (2016);f-v-1

B. Proactive incident monitoring
Action: software and infrastructure related incidents are monitored for and proac-
tively acted upon by interdisciplinary professionals among which are dev and ops.
References: iv-9;iv-6;iv-15;f-v-1

C. Root cause monitoring
Action: root causes of software and infrastructure related incidents are monitored
for and acted upon by interdisciplinary professionals among which are dev and
ops.
References: Guckenheimer (2015);f-v-1

155

Release for production (emerged after processing first validation round
input)

A. Definition of release
Action: a definition of release is present including criteria (e.g. compliance with
a definition of done, updating training materials, release notes, a verification step
that checks whether software works in production etc.) that must be complied
with before releasing to customers.
Reference: f-v-2

B. Automated release material generation
Action: release materials such as training documentation etc. are automatically
generated.
Reference: f-v-2

Configuration management

A. Basic configuration management
Action: configuration items (e.g. OS configurations, software configurations, mid-
dleware, database version etc.) and their relationships are manually managed and
source code is stored in a version control system.
References: Van Vliet and Jagroep (2016);Larsson and Crnkovic (1999);iv-12;iv-7

B. Managed configuration management
Action: configuration items (e.g. OS configurations, software configurations, mid-
dleware, database version etc.) and their relationships are stored in a version
control system.
References: iv-15;iv-10;Steinberg (2016)

Changes after processing first validation round input

A. Manual configuration management
Action: configuration items (e.g. OS configurations, software configurations, mid-
dleware, database version etc.) and their relationships are manually managed.
References: Van Vliet and Jagroep (2016);iv-12;iv-7;f-v-4

B. Automated configuration management
Action: configuration items (e.g. OS configurations, software configurations, mid-
dleware, database version etc.) and their relationships are managed in a configu-
ration management tool.
References: f-v-4;Bassano (2016)

156

C. Version controlled configuration management
Action: configuration items (e.g. OS configurations, software configurations, mid-
dleware, database version etc.) and their relationships are managed in a version
control system.
References: iv-15;iv-10;Humble and Farley (2010);Steinberg (2016);f-v-4

Architecture

A. Architecture descriptions
Action: there is a description of the software architecture. From an operations
perspective there is a description of the technical architecture present.
Reference: Van Vliet and Jagroep (2016)

B. Standardized architecture alignment
Action: the software architecture is aligned with the technical architecture. For
instance, a technical architecture description is present that prescribes how soft-
ware should be aligned with the technical architecture.
Reference: iv-10

C. Service oriented architecture
Action: a service oriented architecture forms the basis of applications.
Reference: initialDevOps;iv-8;iv-12;iv-3;iv-6;iv-5

Changes after processing first validation round input

A. Architecture alignment
Action: the software and technical architecture are aligned at application level
before a release.
References: f-v-4; iv-9

C. Architecture alignment governance
Action: the software and standardized technical architecture evolve mutually and
an architecture board controls the evolvement of both architecture types.
References: w-v-6;w-v-1.

Infrastructure

Changes after processing first validation round input

A. Infrastructure availability

157

Action: development and test environments are made available (e.g. by internal
IT). In addition, acceptance and production environment are made available (e.g.
by operations).
References: iv-13;iv-6;iv-5; Van Vliet and Jagroep (2016)

B. Automatically provisioned infrastructure
Action: infrastructure between development and production is made equivalent
(e.g. by using IaaS so that internal IT can make use of the same infrastructure
used to set up acceptance and production environments).
References: Hüttermann (2012);iv-13;iv-6;iv-5

Changes after processing first validation round input

C. Platform services
Action: standard platform services are embedded in the infrastructure (platform
as a service).
References: w-v-3

158

Appendix D: Case study protocol

Background

Recall that the main research question inherent to this research reads “How can
product software organizations become DevOps mature?”. In order to give a com-
plete answer to this question, a case study is to be performed that is formed around
SRQ4, which in turn reads “How can PSOs leverage the DevOps maturity model to
become DevOps mature?”.

Design

A multiple holistic case design, as a setup for the case study, matches the need.
The reason for choosing a multiple holistic case design can be underpinned by the
fact that the unit of analysis concerns the DevOps maturity of PSOs, where PSOs
represent the business units of Centric, which are divergent in nature and thus
represent different contexts.

Data collection

Data is collected by setting out self-assessments to the assessees of business units
from Centric that are concerned with the creation of a product that falls in the
domain of the business unit. These self assessments are sent out with the aim
to detect whether capabilities are implemented or not. To do so, capabilities are
turned into questions, which are leveraged as a data collection means. Moreover, the
questions are posted on SharePoint, a document management system that Centric
uses, and are made available to the business units as a self-assessment in the following
format (for each question):

� Question
� Extra information [Examples or a further elaboration on the question]
� Comply or false button [When comply is clicked, a participant can give an

explanation or optionally upload evidence that proves the capability(ies) re-
flected in the question is(are) met. When false is clicked, a participant is

159

allowed to provide an explanation on why the capability(ies) reflected in the
question is(are) not met.]

As for storage, the answers from each assessee are stored in the underlying Share-
Point database. Also, when looked at the sixty two capabilities in the results section,
only forty five questions are part of the self-assessment. This has to do with the fact
that certain questions are set up more openly to reduce the number of questions,
which heightens the chance of obtaining more input, and leaving out particular
capabilities as it is known that Centric does not have already implemented these
capabilities.

The questions posed during the case study are listed below.

Culture and collaboration

Communication

1. Does communication between dev and ops occur indirectly?
Extra information In this context, communication between development and
operations could flow through management, software architects, or procedures,
among others, while working towards releases.

2. Is direct communication between dev and ops facilitated by management (e.g.
by stimulating them to communicate directly)?

3. Does communication between dev and ops occur directly?
Extra information examples through which direct communication could oc-
cur are chats, lync calls, common use of applications, in-person contact etc.

Knowledge sharing

4. Does knowledge sharing between dev and ops take place in a passive form? If
so how? Please provide an answer on how knowledge is shared passively in the
textbox that appears after clicking comply, if knowledge is shared passively.
Extra information examples of how knowledge could be shared passively are:
knowledge sharing through local documents or notes, local wikis, a centralized
knowledge sharing system. An example of knowledge to be shared could be
knowledge from development to operations (support) to make support more
knowledgeable when it comes to handling questions.

5. Does knowledge sharing between dev and ops take place in an active form? If
so how? Please provide an answer on how knowledge is shared actively in the
textbox that appears after clicking comply, if knowledge is shared actively.
Extra information an example of active knowledge sharing could be dev and
ops sharing knowledge on what impact certain development solutions have on

160

a virtual machines and on load or training that is provided by dev to ops.
Another example is an informal community of practice on DevOps in which
developers and operations people participate actively and share knowledge on
continuous delivery.

Trust and respect

6. Do dynamics, level of autonomy and planning engender collaboration and the
creation of trust and respect between dev and ops?
Extra information dynamics, here, refers to dev and ops dynamics in that
dev and ops are willing to collaborate. Further, an example of how to engender
the creation of trust and respect and collaboration between dev and ops could
be a DevOps duty rotation where developers are allocated for an amount of
time to take on operational tasks and become familiar with these tasks.

7. Is a culture of trust and respect between dev and ops facilitated by manage-
ment?
Extra information facilitation by management means that management
should not manage by fear, but should act as a servant leader that supports
professionals in day-to-day tasks, has an understanding of operational tasks
(e.g. managers that know how to develop and have an understanding of oper-
ational tasks) and allows dev and ops to learn quickly from mistakes.

8. Is a culture of trust and respect between dev and ops maintained? If so, how
is such a culture maintained?
Extra information examples are, rewarding dev and ops as a group when
a release is successful, being transparent and open towards one another to
prevent blaming, and working towards shared goals (e.g. bringing out the
release together, where together means with dev and ops, another shared goal
is improvement of quality-of-service)

Team organization

9. Are teams composed of multiple disciplines? If so, what disciplines do teams
consist of? Please provide the disciplines the teams consist of in the textbox
that appears after clicking comply, if teams consist of multiple disciplines.
Extra information a team could , for instance, consist of developers, testers,
operations people etc.

10. If these teams also include ops, are these teams composed of dev and ops peo-
ple, who are specialized in specific areas, but also have a shared understanding
of each other’s tasks?
Extra information a developer could, for instance, have knowledge of oper-
ations tasks and the other way around.

161

Alignment

11. Is alignment with dependent internal and external stakeholders taken into
account in the roadmap?
Extra information examples of internal stakeholders are shared component
teams from which components are integrated with the product, and operations
from whom the release calendar should be taken into account. An example of
an external stakeholder is a third party that produces software on which the
product depends.

12. Are release heartbeats aligned with the release heartbeats of dependent inter-
nal stakeholders?
Extra information release heartbeat, here, refers to the frequency of releas-
ing to customers, which could be once a day or twice a year, to name a few
examples. Because of dependencies within a product software organization,
it is important to align release heartbeats among dependent parties at opera-
tional level in order to prevent release inconveniences (for instance, a team who
releases several times a day and is dependent on a team who releases software
twice a year, calls for misalignment). Hence, at least deployment moments
should be aligned, while the sprint frequencies of dependent teams could be
aligned as well.

Product, process and quality

Release heartbeat

13. Are functional and nonfunctional requirements and incidents gathered from
and prioritized with internal stakeholders and external stakeholders (e.g.customers)?
Extra information a requirement from ops could, for instance, be hooks the
application should use to notify ops of malfunctioning.

14. Is there a fixed release heartbeat present in which validation of functionality
occurs with internal stakeholders and external stakeholders (e.g.customers)?
Extra information a release heartbeat could vary with regard to frequency.
Moreover, a release heartbeat could be six weeks (i.e. every six weeks, a release
is brought to market), but could also be twice a year (i.e. two times a year, a
release is brought to market)

15. Are functional, nonfunctional requirements and incidents gathered by moni-
toring production environment(s)?
Extra information an example is using application insights to monitor pro-
duction environment(s) and gain insights into usage data, performance data
and incidents. These insights might then be stored in the backlog and con-
tribute to further development of the product.

162

Branch and merge

16. Is source code stored under version control?

17. Is a branching/merging strategy adhered to?

18. Is a branching/merging strategy adhered to that is tailored to a DevOps way
of working?
Extra information an example of such a strategy is trunk based develop-
ment, which entails multiple developers developing on a shared mainline and
checking in at least once per day.

19. Is functionality made available to user groups by means of feature toggles?

Build automation

20. Are builds created automatically?

21. Are builds created automatically after each check-in?

Development quality improvement

22. Are manual code reviews, pair programming, code conventions or other manual
code quality improvement mechanisms performed or in place?

23. Are broken builds detected, made visual (e.g. on a dashboard) and quickly
fixed (e.g. within a day) so that work can proceed?

24. Are gated check-ins present?
Extra information a gated check-in is performed before committing to a
central repository by merging local changes with the head of the master branch
and carrying out tests to see if the changes do not yield a broken build. If this
is the case, the changes can be merged with the central repository.

25. Is code quality monitored automatically (e.g. by using a tool such as Sonar-
Qube)?

26. Are quality gates defined against which code quality is measured?
Extra information a quality gate is a policy against which code is measured.
For instance, code coverage must comply with a certain percentage in order
for code to pass.

Test automation

27. Are unit, acceptance, regression, integration (“chain”) and nonfunctional tests
performed? If so, which of these tests are performed manually? Please provide
the tests performed manually in the textbox that appears after clicking comply,
if manual tests are performed.

163

28. Are these manual tests performed systematically? Please provide, for each
manual test, how systematically this test is performed (e.g. unit tests - each
sprint) in the textbox that appears after clicking comply, if tests are performed
systematically.
Extra information systematically, here, refers to manual tests being carried
out each release, sprint etc.

29. Are test driven development practices (e.g. mock frameworks, unit test cre-
ation before coding) involved in testing?
Extra information examples of test driven development practices are writing
unit tests before code is written and using a mocking framework, which aids
in isolating dependencies so that the code, one wants to test, can be tested in
isolation.

30. Which of the tests mentioned before (i.e. unit, acceptance, regression, integra-
tion (”chain”), nonfunctional) are performed automatically? Please provide
the tests that are performed automatically in the textbox that appears after
clicking comply, if tests are performed automatically.

31. Are these automated tests performed systematically? Please provide, for each
automated test, how systematically this automated test is performed (e.g.
automated unit tests - for each check-in) in the textbox that appears after
clicking comply, if automated tests are performed systematically.

Deployment

32. Is automated deployment (including the processing of data model changes) to
development, test, acceptance and production environments possible? Please
provide the environments to which automated deployment is possible and how
this is possibe (e.g. to all environments through push-buttons in a continuous
delivery setting, to the test environment through an automated deployment
process that transfers the build from dev to test etc.) in the textbox that
appears after clicking comply, if automated deployment is possible.

33. Are rollbacks (including bringing data back to a stable state) automated? If
not, please provide a short explanation of how rollbacks are dealt with.

release for production

34. Is a definition of done that includes development and testing criteria, among
others, to be met for each sprint, adhered to?
Extra information criteria to be met for a sprint could concern carrying out
tests, carrying out peer reviews etc.

35. Is a definition of release, including ops criteria to be met before release, ad-
hered to?

164

Extra information criteria to be met could concern updating system docu-
mentation that is compatible with the software, training documentation, re-
lease documentation, and should include a verification step to check whether
the software works in production.

Incident handling

36. Are incidents acted upon by development or operations through an incident
management process?
Extra information incidents are often logged by a service desk and acted
upon by development or operations.

37. Are incidents proactively acted upon by development and operations before
incidents affect the customer (when the software is already released and runs
in production)?
Extra information an example here could be monitoring for performance
problems and act on these problems before the customer is affected by the
problem by having development and operations pro-actively solve the problem
(e.g. support contacts the customer to inform the customer about an upcoming
incident, while development starts to solve the incident before it affected the
customer).

Foundation

Configuration management

38. Are supported versions of configuration items and their dependencies managed
manually?
Extra information manually, here, refers to managing configuration items
and their dependencies in excel sheets or documents or the like.

39. Are supported versions of configuration items and their dependencies managed
in a configuration management tool?

40. Are supported versions of configuration items and their dependencies managed
in a version control system?

Architecture

41. Is the software architecture (a description including used/shared/third party
and own components and interfaces between them) aligned with the technical
architecture (a description including own/third party frameworks etc.) before
a release?

42. Do the software and technical architecture evolve mutually in a continuous
fashion in such a way that they are continuously aligned and kept up-to-date?

165

Infrastructure

43. Are development, test, acceptance and production environments provisioned
(i.e. provided with a compatible configuration for software to work) manually?
Extra information manually, here, could for instance refer to walking through
a manual to provision an environment.

44. Are development, test, acceptance and production environments, which are
equivalent to a certain extent, provisioned automatically?
Extra information an example of provisioning an environment could be:
provisioning a virtual machine by means of a tool that allows for pushing a
declarative configuration (i.e. a reproducible configuration in code) to this
virtual machine. Equivalent refers to environments being equal to a certain
extent in hardware and configuration.

45. Is a platform (which might already include a database server, a webserver etc.)
used that allows for direct deployment and testing, among others, on managed
environments (also known as platform-as-a-service)?
Extra information such a platform, which is available to development, could
already include a database server, a web server etc and is managed by opera-
tions. Furthermore, rights and rolls declare what can be done on an environ-
ment. For instance, deployments can be done to a production environment,
but changing the configuration of this environment can only be done by au-
thorized people.

Analysis

The results of the case study are first used to form an overall maturity level of
Centric. Indeed, after all filled in assessments are obtained from the assessees,
the overall maturity level of Centric is determined by plotting the capabilities all
assessees comply with on the maturity model. This plot is then used to give each
assessee insight into the current DevOps maturity level as opposed to the overall
DevOps maturity level of Centric by plotting each assessee against the overall plot,
so that insight can be gained into how the situation of an assessee scores in relation
to Centric in general. The filled in assessments are transferred into maturity plots by
qualitatively analyzing whether capabilities are complied with or not and by taking
into account the additional explanations the assessee is allowed to give in order to
clarify why certain capabilities are complied with or not.

Plan validity

The following tests by yin, 2013 are considered to ensure validity of the case study.

166

Construct validity

Construct validity alludes to “identifying correct operational measures for the con-
cepts being studied” (Yin, 2013, p. 46). Various case study tactics can be adopted
in the case study to handle construct validity such as using multiple sources of ev-
idence, establishing a chain of evidence (case study research questions, case study
protocol, case study database, case study report) and having key people review the
draft case study report. Construct validity in this case study is met by measuring
the DevOps maturity level of a product software organization. Moreover, one of the
aims of this case study is to evaluate the capabilities and maturity model in prac-
tice and therewith give an organization an advice on how to become more DevOps
mature. For this to be done, the current maturity level needs to be known and
thus needs to be measured. Such a maturity level is defined as a “a well-defined
evolutionary plateau within a Functional Domain”(Van Steenbergen et al., 2013, p.
45), where the functional domain, in the context of this research, concerns DevOps.
In order to measure this maturity level of Centric, the multiple sources of evidence
tactic is complied with, since the maturity model is made up on the basis of various
sources. Further, yet another means of data gathering, namely self-assessments, is
used in this study to be able to measure the DevOps maturity level of a PSO. Look-
ing at other tactics, also a chain of evidence is established since the case study is
leveraged to answer a research question, a case study protocol is set up, a database
of case study data is maintained (as becomes clear later on), and reporting the case
study is done in the results section. Last but not least, the thesis is reviewed by
supervisors.

Internal validity

Internal validity is defined as “seeking to establish a causal relationship, whereby
certain conditions are believed to lead to other conditions, as distinguished from
spurious relationships” (Yin, 2013, p. 46). Internal validity is not applicable to this
case study resulting in no need to take into consideration tactics to tackle internal
validity. That is to say, exploratory case studies, which is opted for, are not intended
to search for a causal relationship. Rather, exploratory case studies are a means to
explore those situations in which the intervention being evaluated has no clear, single
set of outcomes (Baxter & Jack, 2008).

External validity

External validity refers to “defining the domain to which a study’s findings can be
generalized” (Yin, 2013, p. 46). Tactics that address this test are theory that can be
used in single-case studies and replication logic that can be utilized in multiple-case
studies. In the context of this research, the case study is performed at one organi-

167

zation. However, interview data originating from three different organizations and
various literature sources were used in the setup of the maturity model and capa-
bilities used in the case study, which ensures generalizability to some extent.

Reliability

The fourth test concerns reliability and states that one should be able to demon-
strate “that the operations of a study - such as the data collection procedures - can
be repeated, with the same results” (Yin, 2013, p. 46). Reliability in this study
is met, since the case study is conducted by following this protocol, which could
also be leveraged in other studies by other researchers. Furthermore, a case study
database is maintained in that all data belonging to the case study is stored via
SharePoint.

168

