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Abstract. We consider scenarios in which long sequences of data are analyzed
and subsequences must be traced that are monotone and maximum, according
to some measure. A classical example is the online Longest Increasing Subse-
quence Problem for numeric and alphanumeric data. We extend the problem in
two ways: (a) we allow data from any partially ordered set, and (b) we maximize
subsequences using much more general measures than just length or weight. Let
P be a poset of finite width w, and let δ be any data sequence over P . We show
that the measure of the maximum monotone subsequences in δ can be main-
tained in at most O(w log min( n

w
, Dn)) time and O(min(n, wDn)) memory when

the n-th data item is processed, where Dn is the ‘depth’ of the measure at posi-
tion n (n ≥ 1). The result generalizes all earlier O(log n) time-per-input results
for the corresponding longest or heaviest increasing subsequence problems.

Keywords: data sequences, partially ordered sets, monotone subsequences,
online algorithms, sequence measures.

1 Introduction

In the processing of long sequences of data, it is a major problem to find and
maintain analytic information about specific patterns. Patterns can be any scat-
tered subsequences of interest that occur in a sequence, with or without a
pre-specified characteristic. A classical example is the Longest Increasing Sub-
sequence Problem [16]: given a sequence of distinct numbers in a streamlike
fashion, keep track of (the length of) the longest increasing subsequence ‘from
left to right’. In [21] a more general weighted version of the problem is consid-
ered. We study the problem in the framework of online algorithms.

We extend the problem in two ways. First of all, we allow sequences of
data from any partially ordered set P and want to compute (the length of) the
subsequences that are maximum and monotone (ascending or descending) as
the sequence unfolds. Secondly, we want subsequences to be maximized using
a much wider class of measures than just length or weight.
? Version: May 31, 2017.
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This leads to the following general problem, for which we seek a solution
that is both time- and space efficient. Let δi = σ1, · · · , σi (i ≥ 1) denote the
prefix of any data sequence δ as observed up to position i.

Online Maximum Ascending Subsequence Problem: Given a se-
quence δ of distinct elements from a partially ordered set P and a se-
quence measure H, compute the function FH(δi) for i = 1, 2, · · · such
that for all i with i ≥ 1, FH(δi) = ‘the maximum H-value over all
ascending subsequences of δi’.

We will define later what measures H are allowed. FH will be termed the ‘max-
imizer’ associated with measure H. We assume that the width of the posets P
we consider is bounded by w, for some finite w ≥ 1. (The width of a poset is
the size of its largest antichain.)

1.1 Problem Background

The archetypical Longest Increasing Subsequence Problem is well-studied in the
theory of Young tableaux [33, 35] and permutation graphs [17], and in applica-
tion areas like computational biology [19]. The problem also arises naturally in
the analysis of ‘patience sorting’ [4, 26, 27].

The (expected) length of longest increasing subsequences is a well-studied
entity. By the ‘subsequence theorem’ of Erdős and Szekeres [14], every sequence
of n distinct numbers must have an increasing or decreasing subsequence of at
least d

√
n e terms. For random permutations, the problem of determining the

expected length of a longest increasing subsequence is known as the Ulam-
Hammersley problem [33]. By the Baik-Deift-Johansson theorem [5], the ex-
pected length equals 2

√
n − αn

1
6 + o(n

1
6 ) with α = 1.77108.. and n → ∞. For

more mathematical details we refer to [33].
The extension to posets comes from tuple data. By Dilworth’s theorem [13],

any poset P of finite width w decomposes into precisely w chains. However,
monotone sequences in P need not be confined to a single chain, they can ‘me-
ander’. We also allow measures other than length. This makes the Online Max-
imum Ascending Subsequence Problem a nontrivial extension of the Longest
Increasing Subsequence Problem. For sequences of n distinct elements from P ,
the expected length of a longest ascending subsequence is at least d

√
n
w e.

1.2 Algorithmic Background

The Longest Increasing Subsequence Problem can be solved in O(n log L) time,
where L is the length of the longest increasing subsequence [16, 31]. The al-
gorithm can be extended to produce all longest increasing subsequences, in an
additional O(L) time per sequence [6]. The O(n log L)-bound is optimal in com-
mon models [16, 32]. If n is known at the outset, O(n log log n) implementations
exist [20, 25]. In a more powerful RAM model an O(n log log L)-time algorithm
can be achieved [10]. We will not use this model here.

A relevant extension of the Longest Increasing Subsequence Problem was
distinguished in [21]. There, similar bounds as above were shown for the weighted
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case, in which each term of δ has a (position-dependent) non-negative weight
and one looks for a maximum weight (i.e. ‘heaviest’) increasing subsequence. A
special case is the problem to determine a heaviest monotone subsequence of a
permutation of n numbers in which each number has a weight equal to itself.
In [34] it is shown that these subsequences must weigh at least

√
n/3.

Many variants of the Longest Increasing Subsequence Problem have been
considered. These include e.g. computing longest increasing subsequences with
constraints, longest common (increasing) subsequences of several sequences, and
results depending on domain size [7, 11, 41, 42]. The longest increasing subse-
quence problem has been studied in parallel computing [2, 8, 22, 29, 30, 36, 37]
and it has been used as a benchmark in the study of streaming algorithms [24,
40], in combination with reporting over sliding windows [3, 9, 12, 23]. Many of
these variants may be studied for the Online Maximum Ascending Subsequence
Problem as well.

1.3 Results

In this paper we develop an approach to the Online Maximum Ascending Sub-
sequence Problem, for arbitrary posets of finite width and a very general class
of sequences measures. After the precise definitions have been given, we aim for
the following.

Let H be a measure and δ = σ1, σ2, · · · a sequence of elements from poset P .
Let the width of P be bounded by w. We want to compute the values FH(δ1), · · ·
such that the update complexity when stepping from FH(δi) to FH(δi+1) is
small, for every i ≥ 1. One easily recognizes the Longest Increasing Subsequence
Problem as the special case with w = 1.

We show that for any maximizer FH and sequence δ given online, the value of
FH(δi) can be determined using at most O(w log min( i

w , Di)) time per element
while maintaining a data structure in O(w min( i

w , Di)) memory, as i increases.
Here Di is the ‘depth’ of FH at position i, a characteristic we define later. In
case H is the normal ‘length’ measure, Di equals Li, the length of the longest
ascending subsequence of δi.

Aggregating the result for sequences of n distinct poset elements, it follows
that the ultimate value of FH(δn) can be computed using O(wn log min( n

w , Dn))
time and O(min(n, Dn)) auxiliary storage. This generalizes all known O(n log L)
bounds for the Longest and Heaviest Increasing Subsequence Problems, respec-
tively [16, 21]. Some further applications will be discussed.

1.4 Outline

In Section 2 we define the class of measures we admit as generalizations of mea-
sures like length and weight for sequences. We derive several useful properties.
We also list the basic assumptions for computing in posets of finitely bounded
width.

In Section 3 we describe the online algorithm and basic data structure for
computing the values FH(δi) for consecutive values of i. In Section 3.1 we define
the notion of depth for measures, and in Section 3.2 we prove the main result that
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provides worst-case bounds on the time- and space complexity of the algorithm
(Theorem 1).

In Section 4 we comment on the construction of concrete maximum ascend-
ing subsequences, and prove a bound on the number of deletions which are
involved in maintaining the online data structure, if unused memory would not
be automatically reclaimed.

In Section 5 we give examples and argue that our results extend and gen-
eralize the earlier results for computing ‘longest’ or ‘heaviest’ increasing subse-
quences[16, 21]. In Section 6 we give some concluding remarks.

Terminology and Notation Let P be a poset. The partial order of P is
denoted by �. Let P+ be the set of all finite non-empty sequences of elements
of P . Let P ∗ = P+ ∪ {λ}, where λ is the empty sequence. For every sequence δ
of distinct elements (‘data items’) from P , we assume that the occurring items
are indexed by their position in δ.

Let δ = σ1, · · · be a sequence. A subsequence of length t ≥ 1 in δ is any
sequence x = σi1 , · · · , σit with i1 < · · · < it. An ascending subsequence of
length t ≥ 1 in δ is any subsequence σi1 , · · · , σit of δ with i1 < · · · < it such
that σi1 � · · · � σit . A descending subsequence of length t ≥ 1 in δ is defined
likewise. By δi we denote the prefix σ1, · · · , σi of δ of length i (i ≥ 1).

For finite subsequences α, β ∈ P ∗ we write α � β if α is a subsequence of β.
We write α�� β in case α is a non-empty subsequence of β with the last term
of α coinciding with the last term of β.

By ||S|| we denote the cardinality of S. For a, b ∈ R+ with a < b, (a, b]
denotes the half-open interval from a to b. By convention, we set log a = 1 for
any 0 ≤ a ≤ 2.

2 Preliminaries

In this section we define the class of online measures for subsequences we con-
sider. Then we define the ‘maximizers’ associated with them and prove some
basic properties. Finally, we describe our assumptions for computing in posets
of finitely bounded width.

2.1 Measures

Before defining sequence measures, we define their base functions. Let δ =
σ1, σ2, · · · be a fixed but arbitrary sequence of elements from poset P .

Definition 1. A function B : R+×N×P → R+ is called a measure base (or, a
base) if it satisfies the following properties for all s, s′ ∈ R+, i ∈ N and σ ∈ P :
(a) B(s, i, σ) > s, and (b) B(s, i, σ) ≤ B(s′, i, σ) whenever s ≤ s′.

The definition of B(s, i, σ) tells us how the measure ‘s’ of a subsequence of
δi−1 increases when an item σ arrives in the i-th position of δ. We assume that
B-values can be computed in unit time.
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Definition 2. The sequence measure associated with a given base function B
is the function H : P ∗ → R+ such that (a) H(λ) = 0 and (b) for any i ≥ 1 and
u � σ1, · · · , σi−1, H(uσi) = B(H(u), i, σi).

Clearly H is uniquely determined by B and ‘easy’ to compute, given that
B is. For all i ≥ 1, H(σi) = B(0, i, σi) and hence H(σi) > 0.

Example 1. Let w : N × P → R+ be a weight function. Let B be defined
by B(s, k, σ) = s + w(k, σ). B is a measure base, and its associated measure
is H(u) = ‘the ‘positioned’ weight of u’, where symbols are weighed by their
position in δ. This is the measure used in [21]. A special case arises when P has
an additive structure, and w(k, σ) = σ. Then H(u) = ‘the ‘sum’ of the elements
in u’.

Lemma 1. Let H be any sequence measure. Then for all finite subsequences
y, x of δ we have: if y � x, then H(y) ≤ H(x).

Proof. Let B be the measure base of H. Consider y, x with y � x and x �

σ1, · · · , σi. We prove the lemma by induction on i. For i = 1 we observe that
(0 =) H(λ) ≤ H(y) ≤ H(σ1) for y = λ and y = σ1, hence for all y � σ1, and we
are done. Assume the lemma holds for i− 1, for some i− 1 ≥ 1.

Consider y�x for some x�σ1, · · · , σi. If x�σ1, · · · , σi−1, then H(y) ≤ H(x)
by induction. If x�� σ1, · · · , σi, write x = x′σi. Now two cases can arise:

– y�x′. By the induction hypothesis and the properties of B we have: H(y) ≤
H(x′) ≤ B(H(x′), i, σi) = H(x′σi) = H(x).

– y�� x′σi. Then y is of the form y = y′σi with y′ � x′. By the induction
hypothesis we have H(y′) ≤ H(x′) and consequently by the properties of B:
H(y) = H(y′σi) = B(H(y′), i, σi) ≤ B(H(x′), i, σi) = H(x′σi) = H(x).

This completes the induction. ut

By Lemma 1, the maximum value of H over all subsequences of δn is equal
to H(δn), for all n ≥ 0.

2.2 Maximizers

Let H be a sequence measure, with base B. Let Asc be the predicate on sub-
sequences defined by Asc(y) ≡ ‘y is an ascending subsequence of δ.’ For consis-
tency we assume that Asc(λ).

Definition 3. A function FH : P ∗ → R+ is called the maximizer of H if for
any i ≥ 1 and x � σ1, · · · , σi we have FH(x) = max{H(u) | u � x and Asc(u)}.

A function F is called a maximizer if there is a sequence measure H such that
F = FH . We omit subscripts if H is understood from the context. Maximizers
F are everywhere defined and monotone: if y � x, then one sees from Lemma 1
that F (y) ≤ F (x). Note that F (λ) = 0, and thus we have F (λ) < F (x) for all
x 6= λ.
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Example 2. Continuing Example 1, define F by F (λ) = 0 and F (x) = ‘the
maximum positioned weight of any ascending subsequence of x’, for any x � δ
with x 6= λ. Then F is the maximizer of H. The special case in Example 1 leads
to the Maximum Sum Ascending Subsequence Problem.

Lemma 2. Let F be the maximizer of H. Then for all x � δ, F (x) = H(x)
whenever Asc(x). Also, F (x) = max{F (u) | u � x and Asc(u)}.

Proof. By definition, F (x) = max{H(u) | u�x and Asc(u)} for all subsequences
x of δ. From this and with the help of Lemma 1 it follows that for all u with
Asc(u), necessarily F (u) = H(u). Consequently F (x) = max{F (u) | u � x and
Asc(u)}. ut

Lemma 3. Let F be the maximizer of H. Then for all i ≥ 1 and x�σ1, · · · , σi

we have F (xσi+1) = max{F (x),Hx,i+1}, where Hx,i+1 = max{H(y) | y�� xσi+1

and Asc(y)}.

Proof. By definition, F (xσi+1) = max{H(y) | y � xσi+1 and Asc(y)}. For all
y, y � xσi+1 if and only if y � x or y�� xσi+1. It follows that F (xσi+1) is the
maximum of max{H(y) | y �x and Asc(y)} = F (x) and max{H(y) | y�� xσi+1

and Asc(y)} = Hx,i+1. ut

Given a sequence δ and maximizer F , the values F (δ1), F (δ2), · · · may thus
be computed as follows. At every stage, remember the most recent F -value.
When the next input σi+1 ∈ P arrives, compute Hδi,i+1 and set F (δi+1) =
max{F (δi),Hδi,i+1}. Setting y = zσi+1 in the definition of Hδi,i+1, we obtain
Hδi,i+1 = max{B(H(z), i + 1, σi+1) | z � δi and Asc(zσi+1)}. Thus, Hδi,i+1

could be computed by going through all subsequences z of δi and determining
the maximum B(H(z), i + 1, σi+1)-value for those z’s for which Asc(zσi+1).
(The maximum exists, as at least z = λ satisfies the required properties.) We
examine in Section 3 how to do this ‘fast’ in posets of finitely bounded width.

2.3 Computing in Posets

We need a few more assumptions in order to be able to process the elements
of δ. Let P be a poset of finite width (at most) w, By Dilworth’s theorem [13],
we may as well assume that P is given by a decomposition into w disjoint and
ascending chains C1, · · · , Cw. (NB. Elements that belong to different chains
may still be comparable in P .)

With suitable effectiveness conditions on this kind of representation, it be-
comes possible to compute with the elements of P . In particular, as in [15],
we assume two computable predicates, in(x,C) and comp(x, y), that can be
tested in unit time. Given C and x, y ∈ P , the predicate in(x,C) tells whether
x belongs to chain C or not and the predicate comp(x, y) tells whether x � y
or not. Predicate comp enables one to make comparisons in and across chains,
and decide whether x and y are comparable in P at all.
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3 Computing Maximizers Online

For sequences over totally ordered sets it is known that one can efficiently
compute the length of longest increasing subsequences online [16]. In this section
we consider the general problem, for sequences over any poset P of finitely
bounded width and using any permissible sequence measure H.

Let P and H (with base B) be given, let F be the associated maximizer and
δ = σ1, σ2, · · · a sequence of (distinct) elements from P . Let C1, · · · , Cw be a
Dilworth decomposition of P that fulfils the requirements above. In Subsection
3.1 we give the basic definitions we need, in Subsection 3.2 we develop the
general online algorithm to compute the values F (δi) for i ≥ 1.

3.1 Preparations

Our aim will be to compute F (δi) using only a small amount of stored infor-
mation for every i ≥ 1. We begin by observing the following property.

Lemma 4. Let subsequences u, v, w � δ be such that uσjw and vσkw are as-
cending and F (uσj) ≤ F (vσk). Then F (uσjw) ≤ F (vσkw).

Proof. By induction. The assertion trivially holds for w = λ. Assume it holds
for w. Let σl be such that uσjwσl and vσkwσl are both ascending. By Lemma 2
we have F (uσjwσl) = H(uσjwσl) = B(H(uσjw), l, σl) ≤ B(H(vσkw), l, σl) =
H(vσkwσl) = F (vσkwσl). This proves the induction step. ut

Definition 4. Ti = {(F (yσj), σj) | yσj � δi and yσj is ascending}.

Note that F (δi) is equal to the largest F -value of any pair in Ti. All we need
is to filter it out. In order to do so efficiently, we generalize the approach as
used in the Longest Increasing Subsequence Problem.

It can be seen from Lemma 4 that, if (F (uσj), σj), (F (vσk), σk) ∈ Ti with
σk ≺ σj but F (vσk) ≥ F (uσj), then (F (uσj), σj) can be omitted from further
consideration when maximizing F at all later stages. The same can be said
if σk = σj and F (vσk) > F (uσj). In all these cases we say that (F (vσk), σk)
cancels (F (uσj), σj). This motivates the following definition.

Definition 5. A set of pairs Si = {(fj1 , σj1), · · · , (fjk
, σjk

)} is said to be ex-
tremal in Ti if (a) Si ⊆ Ti, and (b) for every pair (F (yσj), σj) ∈ Ti there is
a pair (fjp , σjp) ∈ Si with σjp � σj and fjp ≥ F (yσj), and (c) Si is minimal
w.r.t. to the previous properties.

As we assumed δ to be a sequence of distinct elements of P , no pair of
an extremal set can be cancelled by another pair in the set. (If duplicates are
allowed, then uniqueness can be enforced by requiring e.g. that σjp always equals
the first occurrence of the element in δ for a given fjp-value.)

Lemma 5. Every Ti (i ≥ 1) has an extremal subset Si, and this subset is
unique.
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Proof. Consider any set Ti (i ≥ 1). Define the binary relation �i on its pairs
by (F (uσk), σk) �i (F (uσj), σj) if and only if (F (uσk), σk) = (F (uσj), σj) or
(F (uσk), σk) cancels (F (uσj), σj). The key fact to observe is that �i is a partial
order on Ti.

Let A be the set of all pairs of Ti that are minimal in �i. As Ti is finite, A
is well-defined. Clearly, A is extremal in Ti. Observe that every extremal subset
of Ti must include all the minimal elements of Ti, i.e. all elements of A. Thus,
as an extremal subset in Ti, A is unique. ut

It is easily seen then, that by repeating cancellations in Ti (in arbitrary order)
until no further ones are possible, one necessarily arrives at the one subset of
Ti that must be extremal.

Next, we consider the natural way in which every extremal set Si is parti-
tioned into w subsets by the Dilworth decomposition of P .

Definition 6. For 1 ≤ t ≤ w, let St,i = {(fjp , σjp) ∈ Si | σjp ∈ Ct}.

Lemma 6. For every t (1 ≤ t ≤ w), St,i is a totally ordered set (under the
natural tuple ordering).

Proof. Assume that St,i is not empty. Let (fjp , σjp), (fjq , σjq) ∈ St,i. As σjp and
σjq belong to the same Ct, they are ordered and we may assume w.l.o.g. that
σjp � σjq . Suppose fjp ≥ fjq . Then Si would still be extremal after deleting
pair (fjq , σjq), contradicting minimality. It follows that (fjp , σjp) ≤′ (fjq , σjq),
where ≤′ is used to denote the natural partial ordering on tuples. ut

For the further analysis we need various concepts and notations for the
‘range’ of F , both in general and when restricted to the subsequences that have
their front end in a given chain Ct.

Definition 7. (a) si = ||Si||. (b) st,i = ||St,i||.

Definition 8. (a) Ri = {F (y) | y 6= λ, y � δi, and y is ascending}. (b) The
depth of F at position i is equal to Di = ||Ri||.

Definition 9. (a) Rt,i = {F (yσj) | yσj � δi, σj ∈ Ct and yσj is ascending}.
(b) The depth of F in chain Ct at position i is equal to Dt,i = ||Rt,i||.

Clearly Dt,i ≤ Di but Di ≤ Σw
t=1Dt,i ≤ wDi due to the fact that the ranges

Rt,i (1 ≤ t ≤ w) need not be disjoint. Also, using Lemma 2 one sees that F (δi)
is the largest value in Ri. Hence, if F is integer-valued, one has Di ≤ F (δi).

Proposition 1. For every t (1 ≤ t ≤ w), st,i ≤ Dt,i and si = Σw
t=1st,i ≤

min(i, wDi).

Proof. The inequality st,i ≤ Dt,i follows because the pairs (fjp , σjp) ∈ St,i

must all have different fjp-values, which are values in Rt,i. Subsequently si =
Σw

t=1st,i ≤ Σw
t=1Dt,i ≤ wDi. Also si ≤ i, as we have processed i terms of δ. ut
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3.2 Online Algorithm

The preparatory analysis implies that F (δi) is equal to the largest F -value of
any pair in Si, for any i ≥ 1. We show how one can efficiently compute Si+1

from Si when the next element σi+1 of δ is taken in.
Instead of maintaining set Si directly, we will maintain its partition into

subsets St,i (1 ≤ t ≤ w). Notice that F (δi) can easily be determined in O(w)
time if the sets are structured right, by picking the largest f -value of the top
pairs in these (sorted) subsets.

For efficiency we store each set St,i in sorted order in a concatenable queue.
This type of data structure allows one to perform Min (Max), Find, Insert,
Delete, Split, and Join operations in (at most) logarithmic time per operation.
Concatenable queues can be implemented by means of 2-3 trees or other bal-
anced search trees [1, 28].

Lemma 7. For every i ≥ 1, Si can be stored in O(min(i, wDi)) memory space.

Proof. Concatenable queues can be implemented in linear space [1, 28]. Us-
ing Proposition 1, it follows that the subsets St,i can be stored in Σw

t=1st,i =
O(min(i, wDi)) space. ut

Let the next element σi+1 of δ be provided, and suppose that σi+1 ∈ Cl. We
want to update the partition of Si, to obtain the partition of Si+1. As a first
step we have to determine the pair (f0, σi+1) ∈ Ti+1 with largest f0. Next we
have to see how to insert it.

This step is not merely a matter of updating subset Sl,i. Element σi+1 may
be comparable to elements in several chains, and thus (f0, σi+1) may cause
cancellations in other subsets besides Sl,i as well, in the process of maintaining
extremality. Fortunately, one can efficiently delimit the parts of every St,i that
must be updated.

Definition 10. (a) pret,i = the greatest pair in St,i with σ-value less than σi+1

(undefined if no such pair exists). (b) postt,i = the smallest pair in St,i with
σ-value greater than σi+1 (undefined if no such pair exists).

Notation 1 We write pret,i = (preFt,i, prePt,i) and postt,i = (postFt,i, postPt,i)
(with components undefined if pret,i and postt,i are).

As the elements of δ are assumed to be all distinct, prePt,i and postPt,i

uniquely determine the pairs pret,i and postt,i respectively. Within each subset
St,i alone, preFt,i and postFt,i do so as well.

Lemma 8. For every i ≥ 1, the pairs pret,i and postt,i (1 ≤ t ≤ w) can be
determined in O(w log min( i

w , Di)) steps.

Proof. The concatenable queues store their elements (f, σj) in tuple-sorted or-
der. Hence, using the assumptions for comparing elements of P , one can de-
termine pret,i by searching (using the second component) for the largest pair
with second component less than σi+1 in St,i (if existent), treating elements of
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P that happen to be incomparable to σi+1 as being ‘larger’ than σi+1. In the
search tree implementation of concatenable queues, this can be done in at most
logarithmic time. One can determine postt,i in a similar way. For every t, this
takes a number of operations (comparisons) in the order of

log(1+s1,i)+ · · ·+log(1+sw,i) ≤ w log
w + Σw

t=1st,i

w
≤ w log min(1+

i

w
, 1+Di)

using Jensen’s Inequality and Proposition 1. The lemma follows, using our con-
vention for log-values. ut

This leads to the recipe for updating Si: compute the proper pair (f0, σi+1) ∈
Ti+1, do the necessary cancellations in all subsets St,i in view of the new infor-
mation, and insert (f0, σi+1) into whatever is remaining of Sl,i. The details are
given in the following result.

Lemma 9. For all i ≥ 1, Si+1 can be computed from Si in O(w log min( i
w , Di))

time.

Proof. Assume w.l.o.g. that i ≥ 1 and that the subsets St,i of Si are available in
memory. Let Qt,i denote the concatenable queue in which the elements of St,i

are stored (1 ≤ t ≤ w). Recall that we assumed that σi+1 ∈ Cl. The recipe for
updating Si proceeds as follows.

1) Compute the pair (f0, σi+1) ∈ Ti+1 with largest f0. This first step requires
us to determine a subsequence u with u � δi, such that uσi+1 is ascending and
F (uσi+1) = B(F (u), i + 1, σi+1) is maximum (cf. Lemma 3). As B is monotone
in its first argument, it means we must maximize F (u), subject to u � δi and
uσi+1 ascending. A first value to consider is F (λ), taking u = λ.

To see if a larger value can be obtained, write u = u′σ′, consider all possibil-
ities with σ′ occurring in δi and σ′ ≺ σi+1, and look for the largest value F (u′σ′)
in any pair (F (u′σ′), σ′) ∈ Ti. As Si is extremal in Ti, the largest F -value must
occur in one of the pairs pret,i in St,i for t = 1, · · · , w. Determining all pairs
pret,i can be done in O(w log min( i

w , Di)) time, by Lemma 8.
If no σ′ with the required characteristic exists (thus pret,i is undefined for all

t), we stay with u = λ and set f0 = B(F (λ), i + 1, σi+1) = F (σi+1). Otherwise,
let the maximum F -value occur in the pair pret,i with t = p. (This value is
surely larger than F (λ).) Then compute f0 = B(preFp,i, i + 1, σi+1).

2) Do the necessary cancellations in all subsets St,i in view of the new in-
formation implied by the pair (f0, σi+1). By construction, the new pair (f0, σi+1)
cannot be cancelled by any existing pair in Si. On the other hand, Si∪{(f0, σi+1)}
may not be extremal in Ti+1 just yet.

In order to restore the extremal property, we have to determine all pairs
(f ′, σ′) ∈ Si which are now cancelled by (f0, σi+1). This means we have to
look at every chain Ct (1 ≤ t ≤ w), and determine the pairs (f ′, σ′) ∈ St,i with
f ′ ≤ f0 and postt,i � σ′ and delete them. By the sortedness of St,i these elements
all occur consecutively, from the pair with σ-value postPt,i (if it exists) onward,
i.e. as a contiguous segment. Deleting them is easy, given the concatenable
queues. For every t, we do this as follows:
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– First split Qt,i into concatenable queues Q1
t,i and Q2

t,i, such that Q1
t,i consists

of all pairs with σ-value σ′ such that σ′ ≺ postPt,i and Q2
t,i consists of all

remaining (bigger) pairs. This split can be realized as we located the pair
postt,i before.

– Next split Q2
t,i into concatenable queues Q2a

t,i and Q2b
t,i, such that Q2a

t,i consists
of all pairs (f ′, σ′) of Q2

t,i with f ′ ≤ f0 and Q2b
t,i consists of all remaining

(bigger) pairs. This split can be realized efficiently after locating the pair
with F -value equal to f0, using a search in Q2

t,i on the first component of
the pairs. If no such pair exists, the search will automatically yield the pair
with largest possible f ′ such that f ′ ≤ f0. This will be the pair to split
around.

– Join Q1
t,i and Q2b

t,i into concatenable queue Q3
t,i, which can be done efficiently

as the pairs of Q1
t,i are all less than those of Q2b

t,i. We ‘forget’ (delete) the
elements in Q2a

t,i as these are all cancelled by (f0, σi+1).

3) Insert (f0, σi+1) into whatever is remaining of Sl,i. As all necessary can-
cellations are now done, (f0, σi+1) can be inserted in the queue Q3

l,i.

The resulting overall set of pairs in the concatenable queues Q3
t,i is extremal

and thus equal to Si+1 by construction. Renaming Q3
t,i into Qt,i+1 for every t

(1 ≤ t ≤ w) gives the representation for Si+1 as needed for processing the next
element of δ.

The number of operations (searches, splits, joins) to do the updates in each
Qt,i is not worse than logarithmic and thus, summed over all t with 1 ≤ t ≤ w,
equal to O(w log min( i

w , Di)) as in the proof of Lemma 8. Inserting (f0, σi+1) in
Q3

l,i takes another O(log sl,i) steps, which only adds at most a constant factor
to the overall bound. ut

Combining the lemmas in this section, we obtain the following solution to
the Online Maximum Ascending Subsequence Problem.

Theorem 1. Let F be a maximizer, and δ a sequence of distinct elements from
a poset P of width w. One can compute the values F (δi) online, using at most
O(min(i, wDi)) memory and O(w log min( i

w , Di)) update time when stepping
from F (δi) to F (δi+1) (i ≥ 1).

In Section 5 we will discuss how and to what extent the theorem generalizes
all prior results for the Longest Increasing Subsequence problem.

4 Further Aspects of Computing Maximizers

In this Section we consider a number of further aspects of the given online
algorithm for computing maximizers. This includes the (overall) complexity of
evaluating a maximizer on a complete input sequence, the determination of an
actual ‘maximum ascending subsequence’ at every stage, and a more explicit
way of dealing with deletions of pairs.
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4.1 Computing Maximizers for Complete Sequences

Let F be a maximizer of the general type we consider. Theorem 1 bounds
the update complexity for computing the values of F (δi) online. Summing the
update complexities, the result implies the following bound on the complexity
of computing the value of F (δn) for any n.

Theorem 2. Let F be a maximizer, and δ a sequence of distinct elements
from a poset P of width w. For any n ≥ 1 one can compute F (δn) using at
most O(min(n, wDn)) memory and O(wn log min( n

w , Dn)) time, where Dn is
the depth of F at position n.

By the considerations in Section 1.1 it can be expected that Dn is much
smaller than n

w in practice. If memory space is bounded, then the algorithm
may be run with an upperbound on the length of the subsequences that can be
found.

4.2 Determining Maximizing Subsequences

With little extra effort the given online algorithm can be extended so a concrete
ascending subsequence u � δi such that F (u) = F (δi) can be deduced also, for
every i ≥ 1 for which one would want to do this. The technique for it makes
use of back chaining, as in algorithms for the Longest Increasing Subsequence
Problem.

The necessary backpointers are created in the following way. Referring to the
proof of Lemma 9, whenever a next term σi+1 of δ is supplied, a pair (f0, σi+1) ∈
Ti+1 with largest f0 is determined and added into the extremal set. If f0 =
F (σi+1) then σi+1 by itself is a maximum ascending subsequence ending at σi+1

and no pointer needs to be set. If f0 = B(preFp,i, i+1, σi+1) for some 1 ≤ p ≤ w,
one has to add a back pointer from (f0, σi+1) to prep,i into the record of (f0, σi+1)
in the data structure. By simply following the back pointers starting from a pair,
an ascending subsequence (in reverse order) is recovered that produces the F -
value in the pair. One can enumerate all maximizing ascending subsequences
also, by the same technique as in [6].

To allow for back chaining at all stages, it is requires that during the algo-
rithm, only those pairs are deleted (‘cancelled’) which have no incoming back
pointer(s) and thus do not figure in any potential solution anymore.

4.3 Estimating Deletions

In the online algorithm in Section 3 we took an easy approach when it came to
deleting cancelled pairs. In effect we assumed that the elements of every queue
Q2a

s,i can be returned to ‘free space’ at no charge. When explicit back pointers
are recorded and pairs remain ‘links’ in active back-chains, it may be necessary
to do deletions ‘manually’. This also arises when memory must be managed
directly.

For this, it will be useful to have an estimate on the number of elements
that is deleted in the construction of Si+1 from Si, for every i.
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Definition 11. The density of F at position i is equal to the value of Ei =
max{||(F (u), F (uσi+1)] ∩Ri|| | u � δi and uσi+1 ascending}.

Clearly 1 ≤ Ei ≤ Di (i ≥ 1). Now consider the online algorithm in Section
3.2, in particular the proof of Lemma 9 where it is shown which pairs are
cancelled when updating the online information.

Lemma 10. For all i ≥ 1, in constructing Si+1 from Si, at most min(i, Ei +
(w−1)Di) pairs are deleted (‘cancelled’) and returned to free space ‘en groupe’.

Proof. Surely no more than i pairs can be cancelled, as it is the total number
of pairs we have seen up until this point in the algorithm. For the second part
of the estimate, we consider how the pair (f0, σi+1) is determined in the proof
of Lemma 9.

The first possibility is that f0 = F (σi+1). In this case, no elements from Cl

smaller than σi+1 can occur in δi (‘before σi+1’). It means that in subset Sl,i,
at best the bottom element of the current queue can get cancelled. It would
be exactly the pair (postFt,i, postPt,i) with (F (λ) <) postFt,i ≤ F (σi+1). If this
arises, one clearly has Ei ≥ 1. Estimating the number of cancellations in all
St,i with t 6= l by st,i ≤ Di, the total number of cancellations in this case is
bounded by Ei + (w − 1)Di.

The second possibility is that (f0, σi+1) arises from a defined pair prep,i with
largest F -value. Letting preFp,i = F (u) for some ascending u with u�δi, f0 was
set to f0 = B(preFp,i, i + 1, σi+1) = F (uσi+1). This means that in subset Sp,i,
the new pair cancels all pairs (f, σ′) with f ≤ F (uσi+1) and (σp,i ≺)postt,i � σ′

(if existent). Now note that f0 > preFp,i = F (u) (by the assumptions on B)
and that pairs in Sp,i all have different F -values (by extremality). It follows
that at best all pairs (f, σ′) with F (u) < f ≤ F (σi+1) get cancelled in Sp,i, and
there are at most Ei of these pairs. Estimating the number of cancellations in
all St,i with t 6= p by st,i ≤ Di, the total number of cancellations in this case is
once again bounded by Ei + (w − 1)Di. ut

Corollary 1. Let F be a maximizer, and δ a sequence of distinct elements from
a totally ordered set. One can compute the values F (δi) online, using at most
O(min(i,Di)) memory and O(log min(i,Di)) time for updating when stepping
from F (δi) to F (δi+1). The algorithm deletes at most Ei data items ‘en groupe’
in doing so (i ≥ 1).

Proof. Substitute w = 1 in Theorem 1 and Lemma 10. ut

5 Applications

We conclude with some examples of the algorithmic results, which illustrate the
generality of the complexity bounds that we obtained.

5.1 Longest Ascending Subsequences

Continuing the general approach, consider sequences δ of distinct elements over
some poset P of finite width w. The most common example of a maximizer for
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these sequences is F (δi) = the length of a longest ascending subsequence of δi.
F is obtained by taking the measure implied by the base B : R+×N×P → R+

with B(s, i, σ) = s + 1.

Notation 2 Let Li be the length of the longest ascending subsequence of δi

according to the partial order (i ≥ 1).

The depth of F at position i can be seen to be Di = ||Ri|| = ||{F (y) |
y 6= λ, y � δi and y is ascending}|| = Li. The density of F at position i is
Ei = max{||(F (u), F (uσi+1)] ∩Ri|| | u � δi and uσi+1 ascending} = 1.

Theorem 1 and Lemma 10 imply the following bounds for the Online Max-
imum Ascending Subsequence Problem.

Theorem 3. Let δ be a sequence of distinct elements from poset P of width
w. One can compute Li online, using at most O(min(i, wLi)) memory and
O(w log min( i

w , Li)) update time when stepping from Li to Li+1. The algorithm
deletes at most min(i, 1 + (w − 1)Li) data items ‘en bloc’ in doing so (i ≥ 1).

If one is only interested in accumulating Ln for a sequence of n distinct
elements, it is clear that the total number of deletions can never be more than
n. In this case, the result simplifies to the following.

Theorem 4. Let δn be a sequence of n distinct elements from poset P of width
w. For any n ≥ 1 one can compute Ln in O(wn log min( n

w , Ln)) time and using
at most O(min(n, wLn)) memory (n ≥ 1).

Theorem 4 generalizes the known results for w = 1, in particular it gen-
eralizes the O(n log n) bounds arising from the classical Robinson-Schensted
algorithm for computing longest increasing subsequences of permutations [35]
and Fredman’s O(n log L) result [16].

In Section 1.1 it was argued that ‘in practice’ Ln can be expected to be
‘small’ with respect to n. For random permutations of numbers one has Ln ≈
2
√

n [18, 33], whereas for finite sequences over arbitrary posets P of width w
one may expect Ln to be O(

√
n
w ). This means that the generalized result has

a similar range of practicality as the original Longest Increasing Subsequence
Problem.

5.2 Heaviest Ascending Subsequences

We now consider sequences δ of distinct, weighted elements over a poset P of
finite width w. For a general example, we assume that the weights are chosen
from a fixed set of positive real weights {b1, · · · , bk} with b1 < · · · < bk (k > 1).

We consider the sequence measure (‘weight’) implied by the base function
B : R+ ×N× P → R+ with B(s, i, σ) = s + bs,i,σ, where bs,i,σ ∈ {s1, · · · , sk} is
a parameterized weight assignment such that bs,i,σ ≤ bs′,i,σ when s ≤ s′. Note
that we allow bs,i,σ to depend not only on position and symbol but also on the
initial sum s. This gives a valid measure base. The corresponding maximizer is
F (δi) = the largest total weight of any ascending subsequence of δi. We use the
term ‘heaviest’ for any subsequence of the required characteristic.
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Notation 3 Let Wi be the weight of any heaviest ascending subsequence of δi

according to the partial order (i ≥ 1).

Define β = (bk − b1)/ minj(bj+1− bj) as the amplitude of the set of weights,
and γ = bk/ minj(bj+1 − bj) as the stretch. Note that always β ≥ k − 1, but
that e.g. β = k−1 for k equally spaced weights. To estimate the characteristics
of F , we observe the following. Recall that Li denotes the length of a longest
ascending subsequence of δi, independent of the weights.

– The depth of F at position i is bounded by Di = ||Ri|| = ||{F (y) | y 6=
λ, y � δi and y is ascending}|| ≤ βLi. This follows because the possible F -
values must all lie between b1 (smallest) and bkLi (largest) and are separated
by (at least) minj(bj+1 − bj).

– The density of F at position i is bounded by Ei = max{||(F (u), F (uσi+1)]∩
Ri|| | u � δi and uσi+1 ascending} ≤ γ. This follows because the difference
between any two values F (u) and F (uσi+1) is at most bk and intermediate
values are (at least) minj(bj+1 − bj) apart.

Theorem 1 and Lemma 10 imply the following bounds for the Online Max-
imum Ascending Subsequence Problem in this weighted case.

Theorem 5. Let δ be a weighted sequence of distinct elements from poset P
of width w, in the sense as defined. One can compute Wi online, using at most
O(min(i, wβLi)) memory and O(w log min( i

w , βLi)) update time when stepping
from Wi to Wi+1. The algorithm deletes at most min(i, γ + (w − 1)βLi) data
items ‘en bloc’ in doing so (i > 1).

Finally, if one is interested in merely accumulating Wn for a weighted se-
quence of n distinct elements, it is clear that the total number of deletions is
again never be more than n. In this case, the result simplifies to the following.

Theorem 6. Let δn be a weighted sequence of n distinct elements from poset P
of width w, in the sense as defined above. For any n ≥ 1 one can compute Wn

in O(wn log min( n
w , βLn)) time and using at most O(min(n, wβLn)) memory

(n ≥ 1).

This improves and generalizes the O(n log n) bound for w = 1 arising from
the algorithm of Jacobson and Vo [21]. Moreover, the algorithm proceeds fully
online. Interestingly, the bounds are almost equal to those for the Longest As-
cending Subsequence Problem, except for a factor that is determined by the
‘amplitude’ of the set of weights.

6 Discussion

The algebraic framework of sequence measures and maximizers gives us a gen-
eral way to deal with problems like computing longest or heaviest increasing
subsequences, with a unified methodology. The framework appears to capture
all underlying properties and capitalizes on them in the design of a general
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online algorithm for computing the values of any maximizer as a sequence is
input.

The framework enabled us to solve the Online Maximum Ascending Sub-
sequence Problem in a very general way, for the general class of admissible
measures and sequences of inputs from any poset of finitely bounded width w
that can be effectively represented. It not only generalizes the results for the
familiar Longest and Heaviest Increasing Subsequence Problems to a broader
setting, but also elucidates the principles on which their solution is based.

It is likely that further scrutiny could lead to further improvements. For ex-
ample, we have only derived worst case bounds. From the analysis of concaten-
able queues [38] we know that amortized bounds can be much more favorable.
Also, we have desisted from any further assumptions on the range of the values
that are stored. If a fixed universe could be assumed, then we could use van
Emde Boas trees and get log log n bounds where we now have single-logarithmic
bounds.
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25. E. Mäkinen, On the longest upsequence problem for permutations, Int. Journal of Com-
puter Mathematics 77 (2001) 45-53.

26. C.L. Mallows, Problem 62-2, patience sorting, SIAM Review 4:2 (1962) 148-149, see also:
Problem 62-2, SIAM Review 5:2 (1963) 375-376.

27. C.L. Mallows, Patience sorting. Bull. IMA 9 (1973) 216-224.
28. K. Mehlhorn, Arbitrary weight changes in dynamic trees, R.A.I.R.O. Informatique
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