
Cognitive Modelling with Term

Rewriting

Ivica Milovanović

Johan Jeuring

Technical Report UU-CS-2017-011

June 2017

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Cognitive Modelling with Term Rewriting

Ivica Milovanovi

´

c (i.milovanovic@uu.nl)

Utrecht University, Princetonplein 5
3584 CC Utrecht, Netherlands

Johan Jeuring (J.T.Jeuring@uu.nl)

Utrecht University, Princetonplein 5
3584 CC Utrecht, Netherlands

Abstract

Term rewriting is a well established formal method used for
defining semantics of programming languages, program trans-
formations, automatic theorem proving, symbolic program-
ming, intelligent tutoring system development etc. In this pa-
per, we present a language based on term rewriting as an al-
ternative formalism for modelling cognitive skills. We show
how the language overcomes some deficiencies of production
systems (compositionality, readability, control-flow etc.) and
how, as a consequence, it can help with addressing practical
problems raised by the cognitive modelling community.

Keywords: ACT-R; Language for Cognitive Modelling; Pro-
duction Systems; Term Rewriting

Introduction

Since the pioneering work of Simon and Newell, production
systems have been a dominant formalism for cognitive mod-
elling of human behaviour. A production system is a set of
condition-action pairs, called production rules or simply pro-
ductions. Production conditions test against a collection of
facts, commonly called working memory. A typical produc-
tion system interpreter is a loop that continuously selects and
fires a production whose condition matches the current work-
ing memory content. Firing a production executes its action
which can add, remove or modify working memory facts. If
more than one production matches at a time, a conflict resolu-
tion strategy is used to select and fire a single one. In addition
to cognitive modelling, production systems have been used
for implementing Knowledge-Based expert Systems, Intelli-
gent Tutoring Systems (ITSs), Business Rule Engines etc.

ACT-R Cognitive Architecture

The ACT-R cognitive architecture (Anderson, 2007; Ander-
son, Byrne, Douglass, Lebiere, & Qin, 2004; Taatgen &
Lee, 2003) is similar to general production systems. It dis-
tinguishes procedural knowledge represented as production
rules from declarative knowledge represented as a set of un-
typed key-value pairs called chunks. Keys are commonly
called slots. A distinctive characteristic of ACT-R is that the
main goal of its development has been to faithfully reproduce
human behaviour. For that reason the architecture introduces
a number of constraints not present in general-purpose pro-
duction rule engines. The architecture is divided into a num-
ber of modules, each one specialised for performing specific
brain functions. The central procedural module stores and in-
terprets production rules and coordinates the function of all

the other modules. The visual, aural, motor and speech mod-
ules communicate with the outside world. The goal module
(also called control state module), the imaginal module (also
called problem state module) and the declarative module are
specialised for different aspects of internal cognitive process-
ing. The goal module keeps track of the current state in a
task, the imaginal module keeps track of the current internal
problem representation and the declarative module is respon-
sible for storing long term declarative knowledge and making
it available when needed. The modular nature of the architec-
ture reflects the modular nature of the brain itself, and each
module can be mapped to a particular brain region (Anderson,
2007). A module is capable of fast internal parallel process-
ing, but can only communicate with other modules through a
buffer that can contain a single chunk at a time. The proce-
dural module does not have its own buffer. It can read buffer
content of all the other modules, test the content against LHSs
of many productions in parallel, but it can only fire a single
production at a time. A cognitive skill is a sequence of pro-
ductions each of which can test against the buffers and per-
form actions that directly or indirectly modify the buffers.

Cognition is not a deterministic but rather a stochastic pro-
cess. Knowledge or lack of a skill is not a binary presence
or absence of a given production. It is rather a continuous
quantity. For example, a skill may be present, but not trained.
All the new skills get better with time. To model that, the
ACT-R symbolic system is augmented with a neural-like sub-
symbolic layer. Each chunk has an activation value which
determines whether or not it will be retrieved from declara-
tive memory. If its activation is lower than a certain threshold
value, a chunk is not retrieved even if it matches the declara-
tive request. Each production has a utility value that is used
in conflict resolution. When multiple productions match, the
one with highest utility is selected. Both chunk activations
and production utilities are evolving quantities. Activations
and utilities start low for newly formed chunks and produc-
tions respectively, and get higher with practice.

The Programming Model of ACT-R

An ACT-R program consists of a set of production rules and
chunks. As a programming language, ACT-R inherits all the
characteristics of the production system paradigm. In isola-
tion, productions can be seen as similar to imperative proce-
dures which modify some global state or to functions that take
the state as an argument and return a new modified state as a

result. Different from procedures and functions, a production
is never called directly in code. A programmer writes rules,
and the interpreter decides which rule to fire when. Control
flow in production systems is implicit. The production system
paradigm is well suited for programming solutions to prob-
lems with a large number of independent states and a set of
relatively independent actions that can be performed on those
states, and not so well suited for programming solutions to
problems in well-structured domains, where problem states
are related by some formal laws and actions are organised
into complex control flows (Buchanan & Shortliffe, 1985). A
typical example of the former class are business rule engines,
and of the latter class are typical problems that both students
and experts solve in STEM fields. Production systems are
less suitable for such a domain because of the implicit con-
trol flow. As productions can communicate only indirectly
through working memory, the only way to establish a desired
control flow is to write and read control information to and
from that (global) memory. Doing so results in a goto-like
coding style which is error-prone and produces code that is
difficult to follow, reason about, compose, reuse and main-
tain. Nevertheless, production systems have often been used
for modelling problem solving procedures in STEM fields,
particularly in ITSs (Anderson, Corbett, Koedinger, & Pel-
letier, 1995). The reason for that choice may be partly histor-
ical - ITSs emerged from the ACT-R research.

One might argue that implicit control flow in the context of
cognitive modelling reflects the flexibility of the brain itself.
While that is true, we are investigating the programming as-
pect of cognitive modelling here. Many published cognitive
models1 are based on complex control flow. This holds in par-
ticular for models of learning from instructions or models of
metacognitive processes. Both explicit learning and metacog-
nition require complex control flow and planning. The pro-
duction compilation mechanism (Taatgen & Lee, 2003) even-
tually produces efficient productions with implicit control
flow, but the modeller has to write complex productions with
complex control flow. Using ACT-R terminology, production
systems become less suitable as a programming model with
increased usage of the goal (control state) module. Interest-
ingly, Taatgen (2005) formulated a minimal control principle,
which states that humans tend to use a strategy with minimal
number of control states while learning a new task. What is
more difficult for humans to express as a production system
is also more difficult for the brain to execute. Many tasks
do require at least some amount of control information and
some tasks require complex control. Hence, cognitive mod-
elling can benefit from a programming formalism in which
both flexible and complex control can be expressed naturally.

One more difficulty with ACT-R as a programming lan-
guage, is that modellers have to think explicitly about which
modules to use for given actions. Using an appropriate mod-
ule is important as different combinations of modules for per-
forming the same task can give different predictions of tim-

1http://act-r.psy.cmu.edu

ing, fMRI features etc. Ideally, we would like a modeller to
think about task models at a high-level of abstraction and let
an interpreter map different actions from a given model to the
appropriate modules. An interpreter should know as much
as possible about the ACT-R theory and the modeller should
focus on the domain-specific features of a particular task.

Heeren and Jeuring have developed a language based on
strategic term rewriting (Heeren, Jeuring, & Gerdes, 2010)
and used the language to create a number of ITSs and serious
games. Besides addressing the software engineering issues
of production systems mentioned above, the approach uses
well established and rigorous formal methods from formal
language theory and practice to analyse and automatically
calculate feautures important for intelligent tutoring, such
as instructions and feedback. Strategic term rewriting as a
computational paradigm allows for writing high-level declar-
ative task models using domain-specific notations. For exam-
ple, reducing a logic expression to disjunctive normal form
is modelled as a set of rewrite rules corresponding to laws
of propositional logic (e.g. not(not(p)) -> p). A flexible
strategy applies all rules extensively until no rule can be ap-
plied any more. Such a strategy is similar to strategies used
for interpreting production systems. Contrary to production
rules, more complex strategies can be expressed naturally.
Rewrite rules can be composed to build complex first-class
procedures which themselves can be reused in other proce-
dures and composed to build complex hierarchical domains.

Most of the current cognitive architectures do not offer an
easy way to reuse knowledge from a model (Taatgen, van
Vugt, Borst, & Mehlhorn, 2016). As a result, most pub-
lished models are isolated theories sharing only common ar-
chitectural features, and ,,few cognitive modellers ever use, or
even look at, models built by other modellers”. Taatgen et al
claim that using tools for interactive programming, similar to
iPython notebooks, can make cognitive models more acces-
sible and understandable. Term rewriting as a computational
paradigm can help addressing all of these problems. Firstly,
we can easily compose and reuse terms and rewrite rules, both
automatically and by programmers. Secondly, the high-level
nature of term rewriting allows for writing cognitive models
that are easier to understand (compared to low-level ACT-R
models) even by modellers who are not familiar with classi-
cal AI programming. Finally, term rewriting is an excellent
and natural technique for interactive development.

This paper is organised as follows: we first briefly describe
a symbolic language based on term-rewriting. Then we show
how the language can be used to develop a cognitive model of
the pyramid task (Tenison, Fincham, & Anderson, 2016), and
we discuss which characteristics an interpreter for the lan-
guage should have so that it can give cognitive predictions.
We conclude by comparing the introduced approach with re-
lated work and giving future work. Although we base our
work on ACT-R, the language itself can be used for any cog-
nitive theory by augmenting the interpreter with knowledge
of that particular theory.

Language

The design of our language is inspired by Mathematica
(Wolfram Research, Inc., 2017) and Pure2. The accompany-
ing example is implemented in Mathematica3. Fundamental
constructs of the language are expressions (terms) and rewrite
rules. For rules of the form f(e1,e2...)->rhs we use the
terms rule and function interchangeably. Table 1 gives ex-
amples of these and other language constructs used in this
paper. The interpreter of the language is a higher-order condi-
tional term rewriter with a programmable evaluation strategy.
A cognitive model is a set of rewrite rules in the language.
A cognitive task is a (potentially complex) term. The inter-
preter traverses the term following an evaluation strategy and
applies rewrite rules to sub-terms. A single traversal step,
followed by the application of one or more rewrite rules to
a visited sub-term, is roughly equivalent to the three stages
in a cognitive task, encoding, solving and responding, as de-
fined in (Tenison et al., 2016). We leave a detailed discussion
of the interpreter and evaluation strategies for future work.
Fundamental aspects of the interpreter important for cogni-
tive modelling are described in the next section. The model
used in this paper is encoded as a simple small term, hence
no traversal strategy is necessary.

Model

We use the cognitive model of the pyramid task (Tenison et
al., 2016) as our main example in this paper. It requires rela-
tively complex control flow, is expressed in a relatively recent
version of ACT-R (6.0), and uses most of the modern ACT-R
features. The pyramid task is a simple arithmetic task of the
form base$height where base and height are numbers. To
evaluate a pyramid, we start from base and recursively add
base-1 to it until we reach the total of height addends. For
example, 8$3 is evaluated as 8+7+6=21. The (Tenison et al.,
2016) model predicts three learning phases, which were cor-
roborated by neural imaging experiments. A learning phase
consists of three learning stages - encoding, solving and re-
sponding. In the first learning phase there is a long solving
stage. With enough practice with a given pyramid, people
learn to retrieve the answer for that pyramid without doing
the arithmetics, shortening the solving stage significantly. Fi-
nally, with even more practice with the same pyramid, people
transition to the third learning phase in which they automati-
cally respond without even retrieving the answer. Here we de-
scribe the published ACT-R pyramid model informally, using
a self-explanatory pseudo-syntax for chunks only occasion-
ally. Rather than trying to follow every technical detail of the
model from (Tenison et al., 2016), we use the general the-
oretical ideas from the model, namely the ACT-R theory of
learning by following instructions (Salvucci, 2013; Taatgen
& Lee, 2003). We sometimes use slightly more generic pro-
ductions than those in the published model. For example, in-
stead of having a special production retrieving the sum of two

2https://purelang.bitbucket.io
3https://github.com/IvicaM/CogEx

numbers, we assume the existence of more general produc-
tions that can retrieve results of any unary, binary or ternary
operation respectively. In addition, we use simplified declar-
ative knowledge of arithmetics by treating two-digit numbers
as atomic in the same way single-digit numbers are. This is
a simplification of a real model, but we want to keep the ex-
ample model simple. As the entire approach we describe is
highly compositional, adding more complicated representa-
tion for multi-digit numbers is just a matter of more work.
Table 2 gives an informal description of representative parts
of the ACT-R pyramid model.

We treat the pyramid task as a formal language with a
grammar and semantics. A cognitive model of the pyramid
task is an interpreter of that language. To interpret an ex-
pression from the language (i.e. to solve a particular pyra-
mid problem), the expression is parsed into an abstract syn-
tax term. After parsing, we apply a series of transforma-
tions to the term to obtain a desired solution. Finally, the
solution is used somehow, e.g. it is written or pronounced or
used as an input to some other sub-problem. The three stages
of the interpreting process roughly correspond to the encod-
ing, solving and reporting stages. A typical interpreter of a
programming language parses the entire source code into a
large abstract syntax tree and performs a series of in-memory
traversals and transformations on that tree. Doing the same
in interpreters that serve as cognitive models would gener-
ally be psychologically unrealistic due to limited capacity of
the working memory. Cognitive models are more like sets of
small interpreters each of which interprets a small portion of,
say, a visual scene (the equivalent of source code). To per-
form an entire task, small interpreters are composed using a
traversal strategy. In case of the pyramid task, however, the
entire problem can be parsed and solved in the head. We leave
implementing the parsing stage for future work. Here, we as-
sume that the parsing (encoding) stage is already performed,
resulting in an abstract syntax term. For example, parsing 8$3
produces the following term:

solvePyramid(base ->8,height ->3) (T1)

The above term has a straight-forward interpretation in the
context of ACT-R theory - a goal to solve a pyramid is stored
in the goal buffer, and base and height are stored in the imagi-
nal buffer. More generally, the contents of the goal and imag-
inal buffers are represented as a function call, and a list of
arguments of that function, respectively. Different ways of
achieving a goal are modelled with different definitions of the
function representing that goal. The simplest way of achiev-
ing a goal is the automatic response to a stimulus which oc-
curs in the third phase of learning. For example, if there is
a goal to solve the pyramid with base 8 and height 3, a pro-
duction (P1) can fire to immediately store the solution of that
pyramid in the imaginal buffer. Solving a particular pyra-
mid is represented by a single procedural skill, i.e. a sin-
gle production specific for that pyramid. Such productions
are formed by the production compilation mechanism and
strengthened by subsequent practice with the same pyramid.

Table 1: Examples of Language Constructs Used in the Paper

expression rewrite rule anonymous function subscript notation
add,subtract,f add(2,3)->2 |add($1,$2)| get:pyramid[base]
add(2,3),p(b->8,h->3) b->8 |add($,3)| set:pyramid[sum->8]

Table 2: Representative Portion of the ACT-R Pyramid Model

Productions Facts Operators
P1: automatically respond to a goal (add 8 7 15) O1/O3:(set base/2 sum/count)
P2: retrieve a fact (decrement 3 2) O2:(subtract base 1 term)
P3: harvest retrieved fact (subtract 7 1 6) O4:(add term sum sum)
P4: retrieve an operator (increment 2 3) O7/O8:(decrement/increment term/count)
P5: interpret retrieved operator O5:(say sum); O6:iterate or respond

In phase 2 of learning, when there is no specialised produc-
tion for a given pyramid, a solution for that pyramid is re-
trieved from declarative memory. In that case, two produc-
tions, (P2) and (P3) fire, one which sends a declarative re-
quest and one which harvests it. Different from specific pro-
ductions from phase 3, productions from phase 2 are general
and can retrieve and harvest any declarative fact. In phase 1
of learning, retrieval fails as the given pyramid fact does not
yet have sufficient activation, and the pyramid task is solved
step by step by following instructions. We now show how
we model all three phases using functions defined as rewrite
rules. As automatic procedural skills and declarative knowl-
edge are fundamental and the simplest building blocks in
ACT-R theory necessary to model learning from instructions,
we start from phase 3 and gradually move towards phase 1.

Rewrite rules that transform a pyramid to its solution rep-
resent procedural knowledge used in phase 3. For example:

solvePyramid(base ->8,height ->3) ->21 (R1)

Analogously to ACT-R production rules, rewrite rules such as
(R1) are stored in procedural memory and have utility values.
Given a term, such as (T1), the interpreter matches it against
LHSs of all the rules in procedural memory. A matching rule
transforms the term. If multiple rules match, the one with
highest utility value is selected. As with production firing, it
takes 50ms to apply a rewrite rule stored in procedural mem-
ory. Up to this point, the main difference of the approach
relative to ACT-R is syntactic - rewrite rules are much like
overloaded functions from ordinary programming languages.
Contrary to ordinary interpreters, which are deterministic and
usually select the most specific overload of a function, our in-
terpreter selects an appropriate overload according to the as-
sumptions of the ACT-R theory. We show that using functions
instead of productions that operate on buffers with chunks al-
lows us to write cognitive models in a compositional way.

To model phase 2, we represent declarative knowl-
edge. In ACT-R, chunks represent declarative facts,
e.g. (solvePyramid 8 3 21) (F1). Fact (F1) and its pro-

cedural counterpart production (P1) contain exactly the same
knowledge. Conceptually, both are functions that take some
arguments and return a result. Procedural knowledge is stored
in procedural memory and interpreted directly by the ACT-R
interpreter while declarative knowledge is stored in declar-
ative memory and interpreted indirectly, through productions
similar to (P2) and (P3). Productions (P2) and (P3) act as em-
bedded (in ACT-R) interpreters of declarative knowledge. We
use the same representation for both declarative and procedu-
ral knowledge. For example, the declarative fact equivalent to
(F1), which can be retrieved in phase 2, is represented by the
same function (R1) as its procedural counterpart. Contrary
to procedural knowledge, declarative knowledge is stored in
declarative memory and rules in that memory have activa-
tions, analogously to ACT-R chunks. When there is a goal,
such as the one represented by the term (T1), the interpreter
first matches it against all the rules in procedural memory. If
no rule matches or if the utility of any matched rule is low (be-
cause the model is not yet in phase 3), the interpreter matches
the term against the rules in declarative memory. If no rule
matches or if the activation of any matched rule is low (be-
cause the model is still in phase 1), a model starts interpreting
instructions. Thus we free a modeller from writing generic
rewrite rules, equivalent to productions (P2) and (P3), whose
only purpose is to interpret declarative knowledge. We do not
imply that the skills represented by (P2) and (P3) are innate,
i.e. a part of the architecture (term rewriting interpreter in this
case). We simply consider the equivalent rewrite rules boiler-
plate code from the programming perspective. As the ability
to retrieve and harvest declarative knowledge is essential for
almost any cognitive skill, most modellers would probably
want those rules. In a future implementation, we will expose
that part of the interpreter as rules that can be removed or
customised, if desired.

To summarise, we represent both declarative and the cor-
responding procedural knowledge as functions stored in the
two distinct memories. In learning phase 2, the solution of
a problem is stored in declarative memory as a function that

can be fetched and applied. In phase 3, the same function
is present in procedural memory and can be applied directly,
reflecting automatisation of the given skill. In ACT-R, tran-
sition between phases 2 and 3 is modelled as a production
compilation that collapses rules (P2) and (P3) into (P1). Note
that no such compilation is necessary in our approach as both
kinds of knowledge share exactly the same representation.
The given declarative knowledge is converted into procedural
by copying a corresponding function to the procedural mem-
ory. After copying, its utility can increase with subsequent
practice, as described in ACT-R theory.

In learning phase 1, a given problem is solved by follow-
ing the instructions encoded as declarative knowledge. In ad-
dition to instructions, declarative knowledge of other facts is
usually necessary, as shown in Table 2. We represent those
facts with functions stored in the declarative memory. For
example:

add(8,7) ->15 (R2)
decrement(3) ->2 (R4)
subtract(7,1) ->6 (R4)

Operators encode instructions. A typical operator consists of
an operation to be done, names of the slots from which ar-
guments are obtained and name of a slot that stores the re-
sult. An argument may be a concrete value instead of a slot
name. Table 2 shows the operators encoding the instructions
for solving a pyramid task. Production (P4) requests an op-
erator of the declarative module that can achieve the current
goal. The retrieved operator is executed. As there are differ-
ent possible kinds of actions, multiple productions are nec-
essary for executing each of those actions. We call this set
of productions (P5). Even though productions (P5) are spe-
cific to particular actions, they are still fairly generic as they
can be used in different domains. Dynamic pattern matching
(Anderson, 2007) is necessary to follow the instructions as
slot names to be matched against are not known in advance
and have to be read from the operators. In the same way (P2)
and (P3) can be seen as embedded interpreters of declara-
tive facts, (P4) and (P5) can be seen as embedded interpreters
of declarative operators. As with declarative facts, we im-
plement declarative operators as functions stored in declar-
ative memory and implicitly include rules that fetch and in-
terpret operators. Operators are higher order functions that
return a function. Primitive generic operators perform ba-
sic actions corresponding to reading, comparing and writing
slot values. These operators abstract over dynamic pattern
matching. Non-primitive operators are composed from prim-
itive operators and fact functions. A cognitive model is pro-
grammed as a set of operator functions composed in different
ways to achieve given goals. The acquisition of a skill can be
seen as ,,the composition of already-known component skills
in novel ways to enable the performance of new skills and
tasks” (Salvucci, 2013). The approach we introduce here can
thus be seen as an implementation of that view.

We abstract over dynamic pattern matching by using get,
set and equal functions. Function get takes a list of sub-

scripts and returns a function (getter) that takes an expression
and applies the subscripts to the expression. For example,
get(base) returns |$[base]|. Function set also takes a
list of subscripts, but it returns a function (setter) that takes
a list of values and an expression and returns an expression
with values stored at the subscripts. For example, set(term)
returns |$2[term->$1]|. Function equal takes a list of sub-
scripts and returns a function that tests whether the values at
given subscripts are equal or not. Function not is a standard
logic negation operator. Operator >> is a left-associative gen-
eralised function composition operator overloaded to work
with different kinds of functions and constants. Finally, we
define function update(s,f) as get(s)>>f>>set(s). Al-
though the implementation of the described constructs may
seem involved, writing cognitive models using these con-
structs is relatively easy. We express almost all the operators
from Table 2 as follows:

get(base)>>set(sum) (O1)
get(base)>>|subtract($,1)|>>set(term) (O2)
2>>set(count) (O3)
get(term ,sum)>>add>>set(sum) (O4)
get(sum)>>say (O5)
update(term ,decrement) (O7)
update(count ,increment) (O8)

add, subtract etc. are exactly the same functions used to
encode declarative knowledge. The main advantage of using
the unified function representation for all kinds of knowledge
is that we can build a cognitive model incrementally by hier-
archically composing functions starting from the most prim-
itive ones. Each intermediate function can be easily under-
stood and tested in isolation and reused in other cognitive
models. The only operator missing from the previous list
is (O6), which does not encode any action. Instead, it en-
codes an instruction to test whether height and count are
equal and decides to respond (fetch and execute (O5)) if they
are or repeat the sequence (O7-O8-O4) if they are not. We
express that kind of iteration by the while(condition,f)
function which repeatedly applies f as long as the condition
is true. With while, we express the remaining operator (O6)
as while(not(equal(height,count)),O7>>O8>>O4).

Finally, we compose the operators to express the en-
tire pyramid task: solvePyramid->O1>>...>>O4>>O6>>O5.
The resulting model is a function that can be further reused
and composed too. The solvePyramid function is not stored
in declarative memory as that would not be psychologically
plausible. Instead, it reflects the order in which instructions
are received, and we use the order to distribute the activation
to the individual operators. Fetching the operators based on
their activation is similar to the PRIMS approach (Taatgen,
2013). As we use rewrite rules to implement functions, we
can trace the execution steps of the model. By applying
cognitive interpretation to each step, using the principles de-
scribed above, we effectively get the same simulation as by
running the ACT-R model (Tenison et al., 2016), but with
all the benefits of functions. The model starts with rules
similar to (R2-R4) and operators (O1-O8) stored in declar-

ative memory, much like the ACT-R model. When there is
a goal encoded by the term (T1) and there is no function
(R1) in the declarative memory, the model solves the prob-
lem by fetching and interpreting the appropriate operators.
Some operators, such as (O1), correspond to single produc-
tions and can be interpreted in a single step. Other opera-
tors require sub-goalling and hence correspond to multiple
productions that create sub-goals, fetch additional declarative
facts, and return to the main goal by trying to fetch it from
declarative memory after the subgoal is achieved. For exam-
ple, after execution of (O1-O3), the working memory con-
tains solvePyramid(base->8,height->3,term->7) (T2)
and the operator (O4) is fetched. The operator reads the ar-
guments supplied by get and passes them to add resulting
in the term add(8,7). This interprets as a subgoal and re-
sults in fetching (R2) from declarative memory and storing
(T2) in declarative memory. If (R2) is fetched and executed,
the interpreter retrieves and restores (T2) and stores the re-
sult of addition as encoded by set. To completely reproduce
the results of (Tenison et al., 2016), we interpret setting the
count and saying the result as motor actions performed by the
corresponding modules. We leave the details of implement-
ing motor actions as compositional functions for future work.
When a pyramid is solved, its solution is stored in declarative
memory as a function similar to (R1). Subsequent solving
of the same pyramid increases the activation of its declarative
function. When the activation is high enough, the model tran-
sitions to phase 2 and subsequently to phase 3. These tran-
sitions are similar to the equivalent transitions in the ACT-
R model. However, as we start from fine-grained primi-
tive functions rather than coarse-grained production rules, the
composition process also produces many intermediate func-
tions that can be reused in different models, as in PRIMs
(Taatgen, 2013). Behaviour similar to PRIMs arises naturally
as a consequence of using compositional functions and not as
a consequence of our intentional design.

Concluding Remarks

A number of alternatives to using low-level production sys-
tems in cognitive modelling have been suggested. (Paik, Kim,
& Ritter, 2010) divides those approaches in two groups: reim-
plementing existing languages in higher-level general pur-
pose languages (1), and creating completely new higher-level
languages specialised to writing cognitive models (2). A
more recent approach is to program cognitive models directly
in a general purpose high-level language by using a library
implemented in that language (Salvucci, 2016) (3). Our ap-
proach is somewhere between 2) and 3). It is based on a par-
ticular higher-level language and in that sense similar to 2).
Rather than defining special constructs for abstracting over
the low level features of a cognitive architecture (ACT-R in
this case), we model all aspects of cognition by first-order and
higher-order functions, implemented as rewrite rules. As a re-
sult, programming feels much like programming in a general-
purpose functional programming language, hence the similar-

ity with 3). The work reported here is preliminary and its pur-
pose is to introduce the approach to the cognitive modelling
community. We plan to further develop the language and ex-
plore its strengths and weaknesses by using it to develop real
world cognitive models. We also want to examine mentioned
similarity with PRIMS (Taatgen, 2013) in more detail. Cog-
nitive models implemented as term rewriting systems are ac-
tually algebraic structures. An interesting research question
we want to explore is if we can utilise those structures and a
number of formal methods based on term rewriting, to reason
about cognitive models on a more fundamental mathematical
level. Term rewriting is closely related to formal languages.
We want to further explore theoretical and practical aspects of
that relation in the context of cognitive modelling, what can
be of special interest to computational and cognitive linguists.

References

Anderson, J. R. (2007). How can the human mind occur in
the physical universe? (1st ed.). Oxford University Press.

Anderson, J. R., Byrne, M. D., Douglass, S., Lebiere, C., &
Qin, Y. (2004). An integrated theory of the mind. Psycho-
logical Review, 111(4), 1036-1050.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier,
R. (1995). Cognitive tutors: Lessons learned. The Journal
of the Learning Sciences, 4(2), 167–207.

Buchanan, B. G., & Shortliffe, E. H. (Eds.). (1985). Rule-
based expert systems: The MYCIN experiments of the Stan-
ford heuristic programming project. Addison-Wesley.

Heeren, B., Jeuring, J., & Gerdes, A. (2010). Specifying
rewrite strategies for interactive exercises. Mathematics in
Computer Science, 3(3), 349–370.

Paik, J., Kim, J., & Ritter, F. (2010). Building large learning
models with Herbal. In ICCM’10.

Salvucci, D. D. (2013). Integration and reuse in cognitive
skill acquisition. Cognitive Science, 37(5), 829–860.

Salvucci, D. D. (2016). Cognitive code : An embedded ap-
proach to cognitive modeling. In ICCM’16 (pp. 15–20).

Taatgen, N. A. (2005). Modeling parallelization and flex-
ibility improvements in skill acquisition: from dual tasks
to complex dynamic skills. Cognitive Science, 29(3), 421–
455.

Taatgen, N. A. (2013). The nature and transfer of cognitive
skills. Psychological review, 120(3), 439–71.

Taatgen, N. A., & Lee, F. J. (2003). Production compilation:
A simple mechanism to model complex skill acquisition.
Human Factors, 45(1), 61-76.

Taatgen, N. A., van Vugt, M. K., Borst, J. P., & Mehlhorn,
K. (2016). Cognitive modeling at ICCM: state of the art
and future directions. Topics in Cognitive Science, 8(1),
259–263.

Tenison, C., Fincham, J. M., & Anderson, J. R. (2016).
Phases of learning: How skill acquisition impacts cogni-
tive processing. Cognitive Psychology, 87, 1–28.

Wolfram Research, Inc. (2017). Mathematica 11.1. Cham-
paign, Illinois.

