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Abstract
This paper presents a maramafication of an essential
part of FPLs: the construction of well-typed algebraic
data structures based on type definitions with at most
one type parameter. Maramafication means the design
of visual ‘twins’ of existing programming constructs us-
ing spatial metaphors rooted in common sense or inborn
spatial intuition, to achieve self-explanatoriness. This is,
among others, useful to considerably reduce the gap be-
tween programmers and non-programmers in the cre-
ation of programs, for educational purposes or for in-
voking enthusiasm among non-programmers.

1. Introduction
It would be highly beneficial if non-programmers could
co-program software applications.

The Marama-paradigm, as introduced in previous
work, is a paradigm that is under development with
the intention to considerably reduce the gap between
programmers and non-programmers. The basis of the
Marama-paradigm consists of designing visual ‘twins’
of modern functional programming constructs using
spatial metaphors rooted in common sense or inborn
spatial intuition, making the constructs almost entirely
self-explanatory. This work has coined the term inter-
nal semantics for this purpose: the semantics of con-
structs is evident without an external definition. This
may lower the threshold for non-programmer participa-
tion to a great extent. This work coins the term mara-
mafication for this design process, I.e. if such a twin has
been designed for a language construct L from for ex-
ample Clean(Brus et al. 1987) or Haskell(Hudak et al.
1992), it has been ‘maramafied’.

This paper focusses on a fragment of the challenge: it
presents a new way to visually represent a few aspects of
polymorphy and algebraic data structures as they occur
in modern functional programming languages, and does

so in line with the aforementioned paradigm. The design
is a ‘modular’: it can be adopted straightforwardly into
any visual functional programming language.

Algebraic data structures are designed in such a way
that type consistency is entirely forced by the form of
the M-constructs (maramafied constructs). I.e. a user of
these constructs cannot create a type incorrect value,
simply because the ‘pieces will not fit’. In thus sense,
the approach in this paper is truly visual: the semantics
of the visual blocks is embodied by their visual structure
and spatial manipulation options, and do not require a
definition by textual or spoken means. I.e. a beginner
using the M-constructs can find out how to program with
them, without any prior textual or spoken explanation
about how these constructs work.

Another way to phrase it, is that the semantics of
the visualisation of polymorphy and datastructures pro-
posed in this paper solely relies on shared human intu-
ition for manipulation of 3D objects.

In this article, the term spatial necessity is coined for
the aforementioned property of the visual designs, the
property that given the laws of mechanics (as far as they
are intuitively understood by the majority of humans) it
is only possible to construct something that is correct.
An example of such a widely shared intuition on which
the spatial necessity design paradigm can rely, is that
most people from an already very young age will predict
that a ball that is held in the air, and then let lose, will
move downward.

The design covers algebraic data structures based on
algebraic data type definitions with at most type param-
eter, and can cope with polymorphic constructors with-
out arguments, and can classify a given algebraic data
structure polymorphically (through ‘type statements’),
and is a firm basis for future extensions with multiple
type parameters, and ‘full’ polymorphy, among others.

Section 2 starts with providing some examples that
elucidate all features of the design. The sections after it
provides the formal definition of the design and a math-
ematical proof that its M-constructs indeed exhibit the
same relevant behaviours as their textual counterparts.

2. Examples
2.1 Textual Language: Frapoly
This section presents the textual language that is used
in this article to show the textual equivalences of the
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M-constructs presented in this paper. Because the M-
constructs covered in this paper only deal with a frag-
ment of a modern functional programming language
(FPL) such as Clean or Haskell, this article also de-
fines a textual language that is (isomorphic to) the rel-
evant fragment of such an FPL. The language is called
Frapoly. For intuition, the following first introduces the
language by example. (A formal specification is to be
found in section 3.1.)

Example 1 (Algebraic Data Type Definitions). The fol-
lowing Algebraic Data Type Definitions define a number
of algebraic data types:

1 ::WeekendDay = Sat | Sun
2 ::Bool = True | False
3 ::List a = Cons a (List a) | Nil

Note that this paper does not cover a visual coun-
terpart to algebraic data type definitions. However, it is
important to include them in the textual language for ex-
planatory and definitory purposes.

Example 2 (Algebraic Data Structures). The following
is a comma-separated list of Algebraic Data Structures:

1 True, False, Cons True Nil,
2 Cons True (Cons True False).

The maramafication presented in this paper does not
yet deal with function definition and function applica-
tion. Therefore it is not possible to express type infor-
mation about functions with the maramafied constructs.
However, it already deals with polymorphy in relation
to ADSs, and therefore needs a way to express poly-
morphic type information about ADSs, albeit a less ex-
pressive one than function type definitions. In the textual
language, Frapoly, these expressions take the following
form.

Example 3 (Type Statements). The following statement

1 False <: a

states that the ADS False is subsumed by (<:) poly-
morphic type a (“has type a”). Note that the <: does
not exist in normal FPLs, such as Clean or Haskell. It is
introduced to equip the textual language with the bare
minimum to elucidate the working of the M-constructs
of this paper. Another examples is the following:

1 Cons True Nil <: List a

A non-example is the following

1 False <: List a

This statement is incorrect, because there is no in-
stantiation of a, such that False has type List a.

Self-evidently, the language only allows programs
with type-correct type statements. In a textual program-
ming language this is normally enforced by the type-
checker after writing the program (or at least, the sen-
tence), while in the visual language, as we will see, it
will be enforced immediately by spatial necessicity.

2.2 Visual Language: Madawipol-α
This section presents the visual language, for which the
term Madawipol-α is coined, by example. For clarity
for the reader, in some of the following examples the
correspondence between parts of the visual and the tex-
tual representation is shown. It is essential to note that
these are not put there for definitory purposes: for a
user of the visual language the semantics is contained
in the construction possibilities of the building blocks.
The correspondence is merely put here to provide the
reader of this paper, who is probably well-versed in tex-
tual functional languages, a quick insight into the fact
that these visualisations indeed exhibit the same rele-
vant behaviours as their textual counter parts.

2.2.1 Visual Algebraic Data Structures
Lets start with examples of the simplest ADSs: atomic
ADSs, i.e. ADSs without arguments.

Example 4 (Atomic ADSs). Given the algebraic data
type definitions:

1 ::Bool = True | False
2 ::WeekendDay = Sat | Sun

then the values of type Bool are represented visually as
given in fig. 1. In particular, note the form of the joint
(formed by the lower part of the form), this is important
for the subsequent examples.

Figure 1. True and False.
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Figure 2. Sat.

Subsequently, lets now turn to a molecular ADS (an
ADS that contains arguments), which makes use of the
previous types.

Example 5 (Molecular ADS). Given the algebraic data
type definition:

1 List a :== Cons a (List a) | Nil

The following first focuses on values of type List
Bool. The visual analogue to the constructor Cons is
represented as given in fig. 3. Note the forms of its three
joints.

Figure 3. Cons of List Bool presented in two
perspectives

The visual analogue to the constructor Nil is repre-
sented as given in fig. 4. Note the forms of its joint.

Figure 4. Nil

Now lets build values using these M-constructor
blocks. M-constructor stands for ‘maramafied construc-
tor’ – so within the context of this paper a constructor
as it appear in Madawipol-α. A value Cons True Nil
of the type List Bool, is represented visually as given
in fig. 5.

Figure 5. Cons True Nil
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A value Cons False (Cons True Nil) is repre-
sented visually as given in fig. 6.

Figure 6. Cons False (Cons True Nil), ex-
ploded and assembled view.

It may now be clear to the reader that, using the vi-
sual building blocks of List Bool as given in exam-
ple 5, any value of List Bool can be created. On the
other hand, it is not possible to create anything else than
a valid ADS (or fragment thereof), as becomes clear in
the following example.

Example 6 (Spatial necessity of wellformedness). Con-
sider someone trying to fit a visual ADS of type WeekendDay
into a visual ADS block of type List Bool, as sug-
gested in fig. 7.

Figure 7. Spatial necessity: Weekendday does
not fit into List Bool

It is clear that the building block of type WeekendDay
simply will not fit.

The reader is encouraged to try other combinations
that are not type-correct. These are simply spatially im-
possible to construct.

It is moreover possible to create ‘nested’ structures,
in the visual language, as given in the following exam-
ple.

Example 7 (Nested structures). Consider the type List
(List Bool). All visual building blocks needed to
build values of this type are those already provided in
fig. 1, fig. 4 and fig. 3, in addition to the one given in
fig. 8.

Figure 8. Cons of List (List Bool)

An example of a value, Cons (Cons True (Cons
False Nil)) (Cons (Cons True Nil) Nil) (in a
sugared form: [[True, False], [True]]) is pro-
vided in fig. 9.
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Figure 9. Example of a value of type List
(List Bool)

The reader is encouraged to try visualise more com-
plex values of this type, and also to try to construct non-
well-formed examples (which should be impossible).

2.2.2 Visual Polymorphy
Visualising polymorphy comes with at least one big
challenge if it has to be realised by ‘spatial necessity’.
How can one make ADSs of different types fit into
the same female joint? The previous examples, already
tacitly contained design decisions that make it possible
to realise polymorphy in an elegant way. The following
exemplifies the realisation of polymorphism.

Example 8 (Visual Polymorphy). Consider the follow-
ing type statement.

1 True <: a

(Hence: “There is a substitution s for type variable a,
such that True is of type s.”) The visual counterpart to
this statement, that additionally also expresses its type
correctness, is as given in fig. 10.

Figure 10. True <: a

It is clear the male joint of the visual True fits into
the polymorphic female joint. Now also consider the
statements:

1 Sun <: a
2 Cons True Nil <: a

These also ‘fit’ into the aforementioned polymorphic
female joint, as is made clear in fig. 11.

Figure 11. Sun <: a

Figure 12. Cons True Nil <: a

Lets now consider a correct, and an incorrect type-
statement:
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1 Cons True Nil <: List a
2 Sun <: List a

The visual equivalent indeed does not allow the ADS
Sun to be fitted into the polymorphic female joint List
a, as can be seen in fig. 13.

Figure 13. Sun <: List a

Nested polymorphic types are also no problem. Ob-
serve the following respectively incorrect and correct
type-statement:

1 Cons True Nil <: List (List Bool)
2 Cons
3 (Cons True (Cons False Nil))
4 (Cons
5 (Cons True Nil)
6 Nil ) <: List (List Bool)

[TODO provide picture.]

3. Definition of Madawipol-α
This article suffices with a sketch of the definition and
proof of correctness of the design of Madawipol-α. The
goal of this article is to evoke the reader’s understanding
of the (correctness of the) design. An overly technical
proof is beyond the scope of this article and would even
be unnecessarily obfuscating. Moreover, a treatment of
type statements is omitted – the structure of the proofs
and definitions for these are essentially the same as for
algebraic data structures.

The syntax and semantics of Madawipol-α are de-
fined by means of a translation trans from Madawipol-
α to Frapoly and its inverse transT−1 . This is sufficient
for defining the syntax: the latter is simply equal to the
range of trans . However, it is not sufficient for defining
Madawipol-α’s semantics. A translation does not yet
prove that the target language exhibits the same relevant
behaviours as the original language. The proof-sketch is
realised by first defining a mapping between the relevant
behaviours of both languages, and then showing that the
given translation preserves these behaviours. Another
way to phrase it is that an expression in Frapoly should
have the same relevant behaviours as its translation into
Madawipol-α. Assuming that the chosen textual lan-
guage has a well-defined semantics, the target language
then has then been proven to ‘inherit’ this well-defined

semantics. In more mathematical terms, the translation
defines an isomorphism between two sets of language
expressions with regard to the structure expressed by
these relevant behaviours.

3.1 Definition of Frapoly
Frapoly is a fragment of an existing FPL with strong
static typing such as Haskell or Clean. It only allows
defining algebraic data type definitions and expressing
algebraic data structures, and a fragment of type dec-
larations, coined ‘type statements’, and does not con-
tain function definitions. For the algebraic data struc-
tures and algebraic data type definitions, it follows the
syntax of Clean(). A Frapoly ‘program’ consists of alge-
braic data type definitions, and free-standing algebraic
data structures, both following the syntax as specified in
the Clean language report(van Eekelen et al. 2011). The
expressions use no other constructs than provided in the
examples so far: The algebraic data structures are free
of variables, and simply consist of a tree of constructor-
applications, in which each constructor is expressed by
its name. The leafs consist of constructors that do not
take arguments. The algebraic data type definitions are
limited to type constructors with at most one type pa-
rameter. Each right hand side alternative consists of a
constructor name and a sequence of types. No quanti-
fiers or other constructs are used.

Definition 1 (Frapoly(sub) expressions). Given a set of
algebraic data type definitions ADTDset in Frapoly.
Then ADTDsetconstrs is the set of constructors oc-
curring in ADTDset and ADTDset tyConstrs the set of
type constructors occurring in ADTDset . ADSset(ADTDset)
is the set of all possible ADSs that are well-typed with
respect to ADTDset .

3.2 Translation trans

Madawipol-α’s expressivity is limited to two basic con-
structs: algebraic data structures and type statements.
One of these is, therefore, always provided as an ar-
gument to the function trans . However, Madawipol-α
does not contain ways to express algebraic data type
definitions, but assumes these pre-exist. I.e. Madawipol-
α is in fact a set of languages, each set of alge-
braic data type definitions inducing another instance
of Madawipol-α. trans’s arguments therefore, include,
next to an algebraic data structure or type statement
to be translated a set of algebraic data type definitions
(both in Frapoly) onto a construct in Madawipol-α. 1

Moreover, additional ‘atomic’ translation information2

is needed to fully specify the translation. For this, this
paper coins the term translation configuration. For ex-
ample, a joint-form for each type should be provided in
the translation configuration. It is not trivial what further

1 Note that in future work, also algebraic data type definitions
will be maramafied, and this allows the algebraic data struc-
tures to be defined in terms of these maramafied algebraic data
type definitions instead. Then, Madawipol can in principle be
expressed as one single language, although for technical rea-
sons it may still be advantageous to formulate the translation
as it is given in this paper.
2 Atomic in the sense that it is information that is provided with
some of the languages atoms of Frapoly, such as individual type
constructor symbols
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information is minimally needed to be able to define a
complete and valid translation. We believe we found an
elegant minimal set, which, however, may need future
extension.

The following first specifies the translation configu-
ration.

3.2.1 Translation configuration
First some preliminary definitions are needed. In these
definitions, each joint form is formalised by defining it
as a subset of R2. The subset corresponds to the col-
lection of points that one sees when viewing the bottom
with a line of sight that is perpendicular to the bottom.
I.e. if you would use the male version of the joint form
as a kind of stamp on a piece of paper, these are the
points that would appear on that paper. Moreover, the
origin of R2, is, by definition, aligned with the center
of the complete joint. The formalisation abstracts from
depth and height information of the actual joints. Af-
ter all, if one assumes that male and female joints have
matching heights and depths, the only aspect that deter-
mines whether they fit is the information provided in the
given formalisation.

Definition 2 (Basic Madawipol-α Typing Notions).

1. The function SqReg defines a square region within
R2 with edge length l:

SqReg(l) = {(x, y) ∈ R2| − 1
2
l ≤ x ≤ 1

2
l and

− 1
2
l ≤ y ≤ 1

2
l}. (1)

It is an auxiliary function, used to define some of the
joint forms.

2. The alignment square alignSq is the outermost
square band occurring in all joints. The inner edge
of this square band has, by definition, a fixed length
innerLengthAlignS and an outer edge length outerLengthAlignS .
It is defined as follows:

alignSq = SqReg(outerLengthAlignS)−
SqReg(innerLengthAlignS). (2)

3. The permitted zone pZone is the zone that a type-
constructor form (see below) may maximally oc-
cupy. It is a square-area that lies centered within the
alignment square. The square area of the permitted
zone has an edge length of lengthPZone , so:

pZone = SqReg(lengthPZone). (3)

4. A type-constructor form tyConstrForm is intended
to correspond one-to-one with a type-constructor oc-
curring in a given set of algebraic data type defini-
tions in Frapoly. It should comply with the following
conditions. (1) It is contained in the permitted zone
so tyConstrForm ⊂ pZone . (2) It forms a con-
nected space.3 (3) It is closed (contains its bound-
aries). (4) It must be a surface, so, ∀p ∈ S: there
is a disc D ⊂ S such that p ∈ D. A noa line seg-
ment without thickness. (5) It may contain a finite
(but not infinite) number of holes. Examples with
respectively 0, 1 and 2 holes are a cross with thick
lines, an annulus, and an 8 with thick lines.

3 Topological term for consisting out of ‘one piece’.

5. (Auxiliary definition) Given S ⊂ R2 which is
bounded4. Then the total fill of S, Fill(S), is de-
fined as follows. S is bounded, so there exists a disc
D such that S ⊂ D. Now, Fill(S) consists of all
x ∈ D for which holds that x /∈ S and all paths
from x to points outside D cross S. An example, if
S has an ‘8’-shape, its total fill consists of the two
holes in the ‘8’.

6. A polymorphic space mapping polySpaceMp is
a function that maps each type-constructor form
tyConstrForm to its polymorphic subspace. The
latter is the form that is The latter must be a con-
nected surface without holes that lies within the total
fill of tyConstrForm , i.e. polySpaceMp(tyConstrForm) ⊂
Fill(tyConstrForm).

7. A maximal space mapping maxSpaceMp is a func-
tion that maps each type-constructor form tyConstrForm
to the total space it occupies including its polymor-
phic subspace. Thus, formally it is defined as:

maxSpaceMp(tyConstrForm) = tyConstrForm∪
polySpaceMp(tyConstrForm). (4)

8. The vertical joint size verticalJntSize is the size of
joints perpendicular to their 2D joint form. So, if one
orients the joint form horizontally, it is the vertical
size of the joint. For female joints, this is their depth,
for male joints their height. All joints have the same
vertical size.

Definition 3 (Basic Madawipol-α Notions and Definitions).

• The notion M-constructor stands for a maramafied
constructor: a constructor as it appears in Madawipol-
α. Its precise definition follows later.

• The notion proto-M-constructor stands for an M-
constructor that is not yet in its final form. Such
constructors are not part of Madawipol-α, but are
needed in the process of defining Madawipol-α.

For clarity, the text that follows now, makes use of
one running example. Part of of this running example is
the following set of algebraic data type definitions:
ADTDset =

1 ::WeekendDay = Sat | Sun
2 ::Bool = True | False
3 ::List a = Cons a (List a) | Nil

Given a set of algebraic data type definitions ADTDset ,
then a translation configuration tConf for this set con-
sists of the following parts:

• ADTDset : to contribute to consiseness in notation,
the set of algebraic data type definitions that is as-
sociated with tConf is also included. This allows
the ommission an explicit mentioning of ADTDset
when dealing with translation configurations.

• type-constructor mapping: A mapping tyConstrFormMp
from each type-constructor occurring in ADTDset
to a type-constructor form (see definition 2). Hence,
its type is:

tyConstrFormMp : ADTDset tyConstrs → 2R
2

4 topological term for ‘finitely sized’

7 2017/9/18



• constructor block mapping: A mapping coBlckMp,
which associates a given constructor constr that
occurs in ADTDset with a solid 3D object that is
the M-constructor in its rough form: it does not yet
contain the joints. Its type is as follows.

coBlckMp : ADTDsetconstrs → 2R
3

Moreover, the locations where its joints are to be
created (see aLocMp and rLocMp) are (1) flat sur-
faces with the same orientation as the correspond-
ing joint. (2) sufficiently deep, hence deeper than
verticalJntSize . It should map each constructor to
a unique proto-M-constructor, which even remains
unique after the joints have been added. (That means
that the distinction between two different proto-M-
constructors is never at the location of the surfaces
where the joints are created. The distinction will
then be ‘overwritten’.)

• constructor argument-location mapping: A mapping
aLocMp, which, given a constructor constr from
ADTDset , specifies the location and orientation of
the joints that correspond to the arguments in the
textual form. It has the following type:

aLocMp : (constrT ,N) → jntLocT , (5)

where jntLocT is a joint location, which is a pair
that consists of a coordinate in R3 which indicates
the location of the center of the joint, and the ori-
entation of the joint using the axis-angle representa-
tion():

jntLocT = (jntCenterT , jntOriT )

jntCenterT = R3

jntOriT = (unitVectorT , jntOriT ),

where unitVectorT is the set of unit vectors, de-
termining the rotation axis, and jntOriT the set of
angles [0◦, 360◦].

• constructor’s result-type location mapping: A map-
ping rLocMp, which, given a constructor constr
from ADTDset , specifies the location of the result
type that corresponds to the result type of constr . It
has the following type:

rLocMp : constrT → jntLocT

aLocMp and rLocMp satisfy the condition that they
map a given constructor to non-overlapping joint
locations.

• scalingMap: A mapping scalingMp, which maps
each type constructor to a scale factor. This factor is,
loosely speaking, used to scale down the maramafied
arguments to a maramafied type constructor, so that
they fit within its polymorphic subspace. Its type is
as follows:

scalingMp : tyConstrT → 〈0, 1〉

Scaling of a subset of R2 with a scaling factor is a
simple linear transformation with respect to the origin:

Definition 4 (scaling). Given a scaling factor sf and
S ⊂ R2. Then the scaling operator × is defined as:

sf×S = {(x, y)|∃(a, b) ∈ S : x = sf ·a and y = sf ·b}.
(6)

Definition 5 (translation configuration). Given a set of
algebraic data type definitions ADTDset . A transla-
tion configuration tConf for ADTDset (also written
as tConf ADTDset ) is a tuple

(ADTDset , tyConstrFormMp, coBlckMp,

aLocMp, rLocMp,

scalingMp, verticalJntSize). (7)

which meets the following conditions:

• For any two type constructors tc1, tc2 occurring in
ADTDset , maxSpaceMp(tc1) and maxSpaceMp(tc2)
should not or only partially overlap. I.e.:

maxSpaceMp(tc1) * maxSpaceMp(tc2) (8)
maxSpaceMp(tc2) * maxSpaceMp(tc1). (9)

• For any type constructor tc holds:

scalingMp(tc)×pZone ⊂ polySpaceMp(tc).
(10)

I.e., after applying the scaling factor associated with
a type constructor to the permitted zone, it lies
within its polymorphic subspace.

Notation 1 (Ommission of translation configuration).
The translation configuration is frequently needed in the
definitions to come. Therefore, if it is clear from the
context which translation configuration is intended, it is
omitted from expressions.

3.2.2 Translation trans

Before the definition of the translation, first some aux-
iliary definitions are required. A brief overview of these
is as follows:

• The type translator tyTrans: a function that maps
types from Frapoly to joint forms.

• creaFemJnt : a function that creates a female joint
on a proto-M-constructor.

• creaMaleJnt : a function that creates a male joint on
a proto-M-constructor.

• mConstructorSet : the set of all possible M-constructors.
• MADSset : the set of all M-ADSs.
• FinMADSset : the set of all finished M-ADSs.
• tyTrans: a type annotator: a function that annotates

algebraic data structures from Frapoly with typing
information.

• n
↽: an operator that fits maramafied algebraic data
structures to M-constructors.

The type translator is defined as follows.

Definition 6 (type translator). Given a translation con-
figuration tConf ADTDset , and a (non-function) type in
accordance with ADTDset : ty = tc1 tc2 . . . tcn [tparam].
tparam is present if and only if tcn takes a type param-
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eter. Then

tyTrans(ty , tConf ADTDset) =

(typeConstrForms, polyForm), (11)

where

typeConstrForms = tyConstrFormMp(tc1)∪
scalingMp(tc1)× (tyConstrFormMp(tc2)∪
scalingMp(tc2)× (tyConstrFormMp(tc3)∪

...
scalingMp(tcn−2)× (tyConstrFormMp(tcn−1)∪
scalingMp(tcn−1)× (tyConstrFormMp(tcn)[∪

polySpaceMp(tcn)]) . . .), (12)

and

polyForm = scalingMp(tc1)×scalingMp(tc2)×. . .
scalingMp(tcn−1)× polySpaceMp(tcn). (13)

The 2D joint forms of the female and male joints are
now defined as follows.

Definition 7 (female joint form and male joint form).
Given T, P ⊂ R2 (where T is intended to specify type
constructor forms, and P the polymorphic subspace).
Then

femFormMp(T, P ) = T ∪ P, (14)

while

maleFormMp(T, P ) = T. (15)

creaMaleJnt is defined as follows.

Definition 8 (creaMaleJnt). Given a joint form J ⊂
R2, a joint location jntLoc, a vertical joint size verticalJntSize
and a solid C ⊂ R3, which has a flat surface at the lo-
cation and orientation specified in jntLocT . Then

creaMaleJnt(J, jntLoc, C, verticalJntSize)

maps to C onto which a male joint is attached by first
translating and rotating J according to jntLoc, and then
extruding it perpendicularly away from the surface of C
over a distance of verticalJntSize .

Definition 9 (creaFemJnt). creaFemJnt is defined
analogously to creaMaleJnt , however, instead of ex-
truding, it is used to carve away material from C by ex-
truding the translated and rotated J perpendicularly into
the surface of C, and extracting the resulting form from
C.

A type annotation of a constructor is defined as fol-
lows.

Definition 10 (constructor type annotation). Given a
constructor constr and a set of algebraic data type def-
initions ADTDset . Also, suppose that the type defini-
tion for constr in ADTDset is as follows:

::typeConstr param =

constr t1[param] . . . tn[param], (16)

(Note that type definitions of alternative constructors
are left out of the algebraic data type definition written

above, if there are any.) Here, ti[param] is a type in
which the type parameter param occurs. Moreover,
suppose tha someType is a type in accordance with
ADTDset . Then

constr:[t1[someType] tn[someType] ->

typeConstr someType] (17)

is a constructor that is annotated in accordance with
ADTDset . Note that the above follows the functional
style of defining types of constructors.

An auxiliary notion: a type is closed if it does not
contain any type parameters. I.e. if it is ‘fully instan-
tiated’ and cannot be instantiated any further. This no-
tion is important, because Madawipol-α only contains
M-constructors which arguments have a closed type.

transAnConstr is defined as follows.

Definition 11 (transAnConstr ). Given a translation
configuration tConf ADTDset . Moreover, let constrAn
be a constructor annotated in accordance with ADTDset ,
for which holds that the annotation only contains argu-
ments with a closed type (this includes the case that it
has no arguments), hence,

constrAn = constr:[typea1 . . . typean → typeres],

(18)

where typeai is closed for all i (including the case
n = 0, so if there are no arguments). Then:

transAnConstr(constrAn, tConf ADTDset) =

creaFemJnt(femFormMp(tyTrans(typea1)), aLocMp(constr, 1),

creaFemJnt(femFormMp(tyTrans(typea2)), aLocMp(constr, 2),

...
creaFemJnt(femFormMp(tyTrans(typean)), aLocMp(constr, n),

creaMaleJnt(maleFormMp(tyTrans(typeres)), rLocMp(constr),

coBlckMp(constr)) . . .). (19)

mConstructorSet is now simply defined as the im-
age of the function transAnConstr :

Definition 12 (mConstructorSet). Given a translation
configuration tConf ADTDset .

mConstructorSet(tConf ADTDset) =

{mc|∃ac.transAnConstr(ac, tConf ADTDset) = mc}.
(20)

Note that the argument to mConstructorSet will not
always be mentioned.

Some further basic Madawipol-α notions can now
be introduced.

Definition 13 (M-ADS). Given is a translation config-
uration tConf ADTDset .

• An M-ADS (maramafied ADS) is an object mAds
for which holds: mAds ∈ mConstructorSet or
mAds can be created by joining the joints of several
M-constructors from mConstructorSet . In the lat-
ter case, mAds must form a single undivided struc-
ture, hence, all M-constructors must be (in)directly
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connected to each other. Moreover, the structure
must be free of cycles: there is exactly one path
(sequence of connected constructors) between any
two M-constructors in mAds.

• An M-ADS (maramafied ADS) is an object mAds
for which holds: mAds ∈ mConstructorSet or
mAds can be created by fitting together the joints
of several M-constructors from mConstructorSet .
In the latter case, mAds must form a single undi-
vided structure, hence, all M-constructors must be
(in)directly connected to each other. Moreover, the
structure must be free of cycles: there is exactly one
path (sequence of connected constructors) between
any two M-constructors in mAds.

• A joint that is not connected to another joint, is
called on open joint. The opposite is a closed joint.

• An M-ADS is a finished M-ADS if it does not contain
open female joints. It is an unfinished M-ADS if it is
not a finished M-ADS.

• MADSset(tConf ) is the set of all M-ADSs, includ-
ing the unfinished ones.

• FinMADSset(tConf ) is the set of all finished M-
ADSs.

Theorem 1. All M-ADSs have exactly one open male
joint.

Proof. This can be easily shown by induction on the
structure of M-ADSs.

If an M-ADS consists of one M-constructor, the
property holds. This follows directly from the definition
of transAnConstr : it creates exactly one male joint.
If the property holds for mAds1 and mAds2, then it
also holds for mAds1 joined with mAds2 if they can
be joined. After all, the single male joint of mAds1
must be joined with a female joint of mAds2, which
leaves open the single joint of mAds2, or vice versa.
The remaining single male joint cannot be connected
without creating a cycle, which is prohibited according
to definition 13.

Definition 14 (outermost M-constructor). Given an M-
ADS mAds. The outermost M-constructor of mAds is
the M-constructor which male joint is not connected to
a female joint. (There is exactly one M-constructor with
this property according to theorem 1.)

Next, the definition of trans requires the construc-
tors in an ADS of Frapoly to be annotated with their
exact type. This paper assumes the type inferencing al-
gorithm for Frapoly as a given, because Frapoly is a
fragment of an existing modern functional programming
language, such as Haskell or Clean. This type infer-
encer, in its turn, can be used to define a type annotator
for ADSs. It is a function that annotates an ADS from
Frapoly with typing information. To be precise: it anno-
tates each constructor that occurs in a given ADS with
its inferred type. The definition of a type annotator is
straightforward, therefore, this paper will suffice with
providing examples.

Example 9 (tyAn).

tyAn(Cons True Nil) =

Cons:[Bool (List Bool) -> List Bool] True:[Bool]

Nil:[List a] (21)

Note that tyAn does not annotate molecular (sub)expressions
as a whole. It merely annotates the individual construc-
tors occurring in it. Therefore, the following is a non-
example:

Example 10 (Non-example tyAn). (Cons:[Bool (List
Bool) -> List Bool] True:[Bool] Nil:[List
Bool]):[List Bool]

The (informal) definition of the infix operator n
↽ is

as follows.

Definition 15 ( n
↽). Given (finished or unfinished) M-

ADS
mAds, which may contain open female joints in its
outermost M-constructor, and finished M-ADSmAdsC
(so one without any open female joints). Then:

mAds
n
↽ mAdsC (22)

is the result of (spatially) fitting mAdsC into the nth

argument-position of the outermost M-constructor of
mAds. If the male joint of mAds does not fit into
the nth argument position, or if that position does not
exist or is already taken, then the operator maps to the
constant unjoinable, which stands for “unjoinable”.

For simplicity, the assumption is that the negation
of the conditions in the last sentence is an adequate
formalisation of real joinability, i.e. that the physical
M-ADSs really fit together in the mentioned way. This
assumption, however, does not always hold: the M-ADS
s may physically get ‘into each other’s way’ depending
on the shape of the M-constructors and the structure
that one is trying to build. With minor adjustments,
such as the introduction of ‘flexible’ M-constructors, the
assumption can be made to always hold (future work).

If one or both arguments of n
↽ are unjoinable, then

the result is also unjoinable.
Moreover, n

↽ is left-associative.

This, finally, allows us to define trans on ADSs of
Frapoly:

Definition 16 (trans). The translation of ADS ads is
defined, recursively, as follows:

trans(ads, tConf ADTDset) =

transAn(tyAn(ads,ADTDset),

tConf ADTDset), (23)

where transAn is defined as follows. If adsAn is
atomic, then

transAn(adsAn, tConf ADTDset) =

transAnConstr(adsAn, tConf ADTDset). (24)

Note that adsAn can be offered directly to transAnConstr ,
because an atomic ADS is equal to a constructor with-
out arguments. If ads is molecular, then adsAn can be
written as

adsAn = constrAn argAn1 . . . argAnn.
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In that case:

transAn(adsAn, tConf ADTDset) =

transAnConstr(constrAn, tConf ADTDset)
1
↽

transAn(argAn1, tConf ADTDset)
2
↽

transAn(argAn2, tConf ADTDset)
3
↽

...

transAn(argAnn−1, tConf ADTDset)
n
↽

transAn(argAnn, tConf ADTDset). (25)

An alternative notation for trans is:

transtc(ads) = trans(ads, tc)

This allows expressing the type of trans for a given
tConf ADTDset :

transtConf : ADSset(ADTDset)→ FinMADSset(tConf )

4. Semantical equivalence of
Madawipol-α and Frapoly

As stated earlier, Madawipol-α’s semantical equiva-
lence to Frapoly is proven by showing that (1) rele-
vant behaviours of Madawipol-α and Frapoly that are
intended to correspond, can indeed be proven to cor-
respond under the intended correspondence between
expressions as defined by trans , and (2) that both lan-
guages are equally expressive. In other words, it is
shown that trans and the intended correspondences be-
tween relevant behaviours form an isomorphism. The
following theorems expresses the required correspon-
dences informally.

Informal Theorem 1 (correspondence of fitting joints
together and constructor-application). Fitting a com-
plete M − ADS into an M-constructor corresponds
with constructor-application in Frapoly.

Informal Theorem 2 (correspondence of (joinability+
finishedness) and well-typedness). (joinability+finishedness)
in Madawipol-α corresponds with well-typedness in
Frapoly.

Informal Theorem 3 (expressivity equivalence). Each
finished M-ADS corresponds uniquely to a well-typed
ADS of Frapoly.

The most essential and interesting aspects of the de-
sign of Madawipol-α ly in Informal Theorem 2. There-
fore, the proof in the rest of this paper mostly focus on
this theorem. A proof of Informal Theorem 3 is left to
the reader.

4.1 Correspondence of (joinability+finishedness)
and well-typedness

First a few lemmas are needed that shows that the trans-
lation of types behaves well.

Definition 17. The joint-form complement jntFormComplem
of a (2D) joint form J is defined as

jntFormComplem(J) = pZone\J.
(This is the relative complement of permitted zone
pZone with respect to J , so all points of pZone that
are not in J .)

Lemma 1. A female joint and a male joint fit into each
other, iff the joint-form complement of the 2D joint form
of the female joint does not overlap the 2D joint form of
the male joint.

Intuitively this is clear, therefore the proof is omitted.

Lemma 2 (compatible joints correspond with unifiable
types). A male and a female joint in Madawipol-α fit
together iff the equation of the corresponding types in
Frapoly is unifiable. (This statement is purely about the
compatibility of the extruded joints forms as they are in
themselves. If they are part of an M-constructor there
may be other impediments than these forms.)

Formally expressed: Given a translation configura-
tion tConf , and given two (non-function) types M and
F . Then:

M = F is unifiable ⇔
the male joint based on maleFormMp(tyTrans(M, tConf ))

fits into the female joint based on

femFormMp(typeTrans(F, tConf )). (26)

Proof. According to the definition of Frapoly, types M
and F must have the following form:

M = tcM1 tcM2 . . . tcMn [tparam]

F = tcF1 tcF2 . . . tcFm [tparam]

The type parameter tparam is present iff the type
constructor occurring before it takes a type param-
eter. The following uses the abbreviations: mM =
maleFormMp(tyTrans(M, tConf )),mF = femFormMp(tyTrans(F, tConf ))
and mF = jntFormComplem(mF )

(⇒) Suppose M and F are unifiable, then with in-
duction on n and m:

1. n = m = 1. In this case, it also holds that M = F
(modulo the name of the type parameter): in this
case it is trivial that mM and mF do not overlap,
and therefore, the corresponding male and female
joints fit into each other (lemma 1).

2. Assume the statement holds for n = cn and m =
cm. Now, suppose that n = cn + 1 and m = cm.
So, M ’s type has the form:

M = tcM1 tcM2 . . . tcMcn tcMcn+1 [tparam].

Now suppose the type M−1 is defined as follows:

M−1 = tcM1 tcM2 . . . tcMcn tparam.

The tparam in M−1 must exist, because tcMcn

takes a type parameter as follows from the form of
M . As given, M is unifiable with F . Then it is not
difficult to see that M−1 is also unifiable also with
F (left to the reader). Moreover, according to the in-
duction hypothesis (in combination with lemma 2)
tyTrans(M−1) (abbreviated with mM−1) does not
overlap with mF . If one analyses the definition of
tyTrans , and the property that the permitted zone al-
ways lies within the polymorphic subspace, one sees
that the difference in joint form between mM−1

and mM is contained within the polymorphic sub-
space of the type-constructor form associated with
tcMcn to which all scaling factors of the previous
type-constructor forms have been applied from the
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first to the last. This scaled down polymorphic sub-
space moreover, does not overlap with any type-
constructor form of mM−1 – it lies enclosed within
the inner most one, as a consequence of eq. (10) and
item 6 of definition 2. Outside of this scaled down
polymorphic subspace, the joint forms are identical.
Now, one can distinguish the following cases:
• cm = cn. In this case the polymorphic sub-

space of the female joint is equal to that of the
male. Because the difference between mM−1

and mM is contained within the polymorphic
subspace of M−1, mM and mF do not overlap.

• cm < cn. Now, the polymorphic subspace of the
female joint is a superset of that of the male joint,
so there is even more ‘space’. Then by the same
reasoning, mM and mF do not overlap.

• cm > cn. Because M is unifiable with F ,
tcMcn+1 = tcFcn + 1. mF ’s form was al-
ready identical to that of mM up to the type-
constructor form associated with tcMcn (be-
cause of the induction hypothesis). With the
identity just given, this now also extends up to
the type-constructor form tcf associated with
tcMcn+1. Further up, Mm does not contain
points that are in the polymorphic subspace of
tcf , and therefore does not overlap any of the re-
maining forms ofmF . After all, these remaining
forms ly within the corresponding polymorphic
subspace of mF , as follows from the definition
of tyTrans . Hence, mM and mF do not over-
lap.

3. The proof for the case n = cn and m = cm + 1 is
analogous to the previous case.

(⇐) If M and F are not unifiable, then there is
an i ≤ min(m,n) for which tcMi 6= tcFi. Take
the smallest i for which this holds. Then, by definition
of tyTrans , the corresponding type-constructor forms
of the two have been scaled down exactly the same
amount. Moreover, in their original size, both forms did
not or only partially overlap (see definition 5). After
scaling the same amount, this property will continue to
hold. This means that mM and mF do overlap, and the
corresponding joints do not fit.

The correspondence of (joinability+ finishedness)
and well-typedness is formally expressed as follows.

Theorem 2 (correspondence of (joinability+finishedness)
and well-typedness). Given a translation configuration
tConf ADTDset . Then

1. (well-typedness in Frapoly implies (joinability+finishedness)
in Madawipol-α)

ads ∈ ADSset(ADTDset)⇒
trans(ads) ∈ FinMADSset(tConf ). (27)

2. ((joinability+finishedness) in Madawipol-α implies
well-typedness in Frapoly)

mAds ∈ FinMADSset(tConf )

⇒
∃ads ∈ ADSset(ADTDset) such that

transADTDset(ads) = mAds. (28)

Equivalently, the image of trans tConf is equal to all
M-ADSs that can be constructed from mConstructorSet ,
so to FinMADSset(tConf ).

Proof.
1. (well-typedness in Frapoly implies (joinability+

finishedness) in Madawipol-α) Given is ads ∈
ADSset(tConf ). The proof is by induction on the
structure of ads. If ads is atomic, it trivially holds,
for trans tConf (ads) = transAnConstr(typeannotator(ads)),
the latter of which is by definition an element of
FinMADSset .
If ads is molecular, it could go wrong if the joints
would not fit, which would lead to trans mapping
to unjoinable. The following shows, however, that
this cannot happen. ads is well-typed, so it can be
annoted:

adsAn = tyAn(ads),

and adsAn has the following form:

adsAn = constrAn argAn1 . . . argAnn.

Because this expression is well-typed, the type an-
notation of argAni is unifiable with the ith argu-
ment of constrAn. From the definition of trans one
can immediately see that trans ‘attempts’ to join
the translation of argAni to the ith argument posi-
tion of the translation of constrAn. Using lemma 2
these joins must fit.

2. (joinability in Madawipol-α implies well-typedness
in Frapoly) This can be shown by, among other
things, again using lemma 2, and is left to the reader.

4.2 Correspondence of fitting joints together and
constructor-application

Theorem 3 is expressed formally as follows.

Theorem 3 (correspondence of fitting joints together
and constructor-application). When a constructor ap-
plied to arguments forms a well-typed ADS ads, then the
translation of ads is equal to the translation of the argu-
ments fitted into the corresponding joints of the transla-
tion of the constructor, where the types of the arguments
and the constructor are as they occur in the annotated
version of ads.

In formal terms:
Given a well-typed ADS

ads = constrarg1 . . . argn,

and

tyAn(ads) = constrAn argAn1 . . . argAnn.
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Then the following identity holds:

trans(ads) =

transAnConstr(constrAn, tConf ADTDset)
1
↽

transAn(argAn1, tConf ADTDset)
2
↽

transAn(argAn2, tConf ADTDset)
3
↽

...

transAn(argAnn−1, tConf ADTDset)
n
↽

transAn(argAnn, tConf ADTDset). (29)

Proof. It is no coincidence that this correspondence
looks exactly like the definition of trans – the latter
has been defined according to this structure. The equiv-
alence can easily be proven by induction on the structure
of ADSs.

5. Empirical study into
comprehensibility by
non-programmers

An empirical study among more than 200 pupils have
been carried out by a team of talented secondary schools
students to investigate the understandability of the de-
signs for non-programmers. The results are promising,
but have to be repeated by experienced researchers un-
der controlled circumstances. As a side note it may be
mentioned that the design of Marama evoked quite some
enthusiasm: the team, consisting of 3 ladies and one
gentleman was free to pick any assignment from dif-
ferent disciplines, but chose this one over another. This
is quite unusual for the topic of programming language
design, which is known not to be popular (at least not in
the Netherlands).

6. Related Work
Task Oriented Programming (TOP) is a programming
paradigm to efficiently develop internet applications that
support human collaboration.(Achten et al. 2015) It is an
extension of the functional programming paradigm. One
of the essential features of the paradigm is that it allows
users to assist in the understanding and construction of
these applications, for example through Tonic (Stutter-
heim et al. 2015). The design of TOP so far, however,
is not self-explanatory to non-programmers in many re-
spects. The particular design in this paper, and in gen-
eral – the Marama paradigm, therefore, could be of great
value to the further development of TOP.

Other functional programming languages that ap-
ply visual constructs are often not targeted at non-
programmers at all, and do not employ the principle of
‘internal semantics’ in their designs. Examples are The
Gem Cutter (Evans et al. 2007), Visual Haskell (Reekie
1994) and the more recent Viskell().

Targeted at non-programmers, however, are Tangi-
ble Values (TVs) of Elliott (Elliott 2007). This work
can complement this work. Tangible values unify pro-
gram creation and execution, and are visual and interac-
tive manifestations of pure values, including functions.
However, the design is also not self-explanatory. More-
over, it does not give the user access to actual function

definitions. The focus of this paper forms an important
step towards the latter.

7. Conclusion
This paper has presented a maramafication of an im-
portant part of FPLs: the construction of well-typed al-
gebraic data structures based on type definitions with
at most one type parameter. Maramafication means the
design of visual ‘twins’ of existing programming con-
structs using spatial metaphors rooted in common sense
or inborn spatial intuition, to achieve self-explanatoriness.
This is, among others, useful to considerably reduce the
gap between programmers and non-programmers in the
creation of programs, for educational purposes or for
invoking enthusiasm among non-programmers.

The paper presented the most important parts of a
proof of the congruence between the mentioned maram-
ification and the original expressions.

8. Future Work
Further future work may include: extension to multi-
ple type parameters, allowing constructors with poly-
morphic arguments, further empirical study into under-
standability and usefulness of the constructs by non-
programmers and implementation of the presented de-
sign in an editor.
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