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Abstract

We study a problem that plays an important role in the flower

industry: we must determine how many mother plants are required

to be able to produce a given demand of cuttings per week. This

sounds like an easy problem, but working with living material (plants)

introduces complications that are rarely encountered in optimization

problems: there is no list with possible cutting patterns, describing the

average number of cuttings taken from a mother plant per week. More

importantly, there is no easy way to find out whether a cutting pattern

is feasible, that is, whether the mother plants can keep up delivering

the number of cuttings required by the cutting pattern each week: the

only alternative to asking for an ‘expert’s opinion’ is to apply a field-

test, which takes a lot of time (and there are very many options to

check).

We have tackled this problem by a combination of data mining and

linear programming. We apply data mining to infer constraints that a
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feasible cutting pattern should obey, and we use these constraints in a

linear programming formulation that determines the minimum number

of mother plants that are needed to supply the demand. Due to the

linearity of the constraints obtained by data mining, this formulation

can be reformulated such that it becomes trivially solvable. Next, we

look at the problem of finding the optimal number of mother plants in

case we assume that we can sell the remaining cuttings on the market

for a given price; we show that this problem can be solved efficiently

through linear programming.

Keywords: data mining, linear programming, cutting patterns, col-

umn generation.

1 Introduction

Dümmen Orange is a leading company in breeding and development of cut

flowers, potted plants, bedding plants and perennials with over a century

of experience in the horticultural industry. In addition to a large market-

ing and sales network, Dümmen Orange has a strong network of production

locations. In these production centers so-called mother plants are planted

and grown for a large number of varieties. When these mother plants are

ready, cuttings are harvested during a period of approximately 16 weeks, af-

ter which the mother plants are removed. These cuttings are sold to growers,

who either place orders beforehand, or place orders during the harvesting.

For each variety, the majority of sales takes place in the ‘peak weeks’, which

is a period of approximately 10 weeks; the company has reasonably accurate

demand forecasts per week available.

Dümmen Orange experienced the following problem: For each variety,

the number of mother plants to be planted is decided on the basis of sales

forecasts to which a buffer of 10% is added. When orders come in, contracts

are concluded with the growers guaranteeing that the required number of

cuttings will be delivered at the desired time. When the harvesting starts,

2



at some point in time the availability of the buffer of 10% is reported to

the sales agents, who then try to acquire orders for selling these additional

cuttings. Unfortunately, when they are very successful, too many cuttings

are required in an earlier stage, and the mother plants cannot keep up this

pace for too many weeks in a row, which results in a shortage in later periods.

This led Dümmen Orange to the question of when to report the availability

of the buffer, and possibly to change its size.

Dümmen Orange posed this problem at the study group ‘Wiskunde met

de Industrie’ SWI2016. 1 In close contact with Dümmen Orange we figured

out that we had to address the following research questions:

1. Model how the number of cuttings harvested in previous weeks in-

fluences the potential number of cuttings that can be taken from a

mother plant in the current and future weeks.

2. Determine how many mother plants should be planted to meet the

predicted demand.

3. Determine how many cuttings to offer for sale in each week (and thus

how many to cut).

We have looked at these problems for just a single variety of plant in iso-

lation. Because of a lack of data, we ignored any random disturbances,

but these can easily be included in a later stadium. For the variety that

we studied, we were provided with the predicted demands and the average

number of cuttings over all mother plants per week from 2005 onwards. Un-

fortunately, detailed information concerning the effects of taking cuttings on

the potential mother plants was not provided, and this information was not

available at all.

This paper is organized as follows. In Section 2 we analyze the problem.

In Section 3 we show how the feasibility constraints can be determined using

data mining, and in Section 4 we describe how we can use these feasibility

1see http://www.ru.nl/math/research/vmconferences/swi-2016/
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constraints to find the minimum number of mother plants that are required

to supply the predicted demand. In Section 5 we present a linear program to

find out the best choice of the number of mother plants and the best cutting

pattern, given that we know how many cuttings can be sold additionally

and at which price. We conclude by providing computational experiments

in Section 6 and draw conclusions in Section 7.

Our contribution. We present a simple form of data mining to generate

the yet unknown constraints that are needed to verify the feasibility of a

cutting pattern; as far as we know, our paper is the first one in which

constraints are inferred using data mining. We further show that due to

the linearity of these constraints we only need to apply one cutting pattern,

which leads to a trivial way to determine the minimum number of mother

plants that have to be planted.

2 Finding constraints needed for feasibility of cut-

ting patterns

Since the number of cuttings taken from the mother plants in previous weeks

influences the potential yield for the current week in some unknown way,

we decided to work with feasible cutting patterns. Here, a cutting pattern

describes for each of the 16 weeks the average number of cuttings that are

taken from a mother plant; since it is an average (taken over all mother

plants), this number can be fractional. For the variety that we studied

the typical yield per week was 2 or a little less; as an example a possible

cutting pattern could be {2.0; 1.8; 1.9; 2.0; . . .}, which indicates that in the

first week on average 2.0 cuttings are taken, in the second week 1.8, etc. To

be a bit more general, from now on we use T to denote the number of weeks

during which we take cuttings. After consulting the experts from Dümmen

Orange we found out that the exact time at which the mother plants were

planted within the planting interval made no difference with respect to their
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potential yield of cuttings, and therefore we do not need to let the cutting

patterns depend on the time of planting.

Suppose that we know the set of possible, feasible cutting patterns that

we can apply. In that case we can solve the problem of determining the

required number of mother plants by formulating it as a linear programming

problem. Let n be the number of cutting patterns. We represent cutting

pattern j by the parameters ajt that indicate the average number of cuttings

harvested in week t (t = 1, . . . , T ), when a plant is cut according to pattern

j, for j = 1, . . . , n. Define xj (j = 1, . . . , n) as the number of mother plants

that are cut according to cutting pattern j. If we denote the predicted

demand in period t by bt (t = 1, . . . , T ), then we can formulate the problem of

determining the minimum number of mother plants as a linear programming

(LP) problem as follows:

minM =
∑n

j=1 xj

subject to∑n
j=1 ajtxj ≥ bt ∀t = 1, . . . , T

xj ≥ 0 ∀j = 1, . . . , n

The solution of this LP program yields the minimum number M of mother

plants that have to be planted. Dümmen Orange can decide to add more (for

example to have a buffer to guard against disturbances in the production

and/or sales process). Note that, although the variables xj should attain

integral values only since these correspond to numbers, it is sufficient to solve

the problem by solving the LP-relaxation (where the integrality constraints

are relaxed) and round up the outcome values, since the total of the xj

values is big and at most T of them will get a value different from zero (we

will see later that we need only one cutting pattern in an optimal solution).

Moreover, if the time of planting the mother plants would make a difference

with respect to the yield of cuttings, then this can easily be incorporated in

this model by making the xj variables dependent on the time of planting.
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Observe the close resemblance between our cutting problem and the stan-

dard cutting stock problem (see for example Gilmore and Gomory (1961,

1963)). In the cutting stock problem, however, we consider items with dif-

ferent lengths, whereas we now have identical items that are cut in different

periods. More importantly, in the cutting stock problem, it is trivial to

describe the constraints that a cutting pattern must satisfy to be feasible.

This makes the cutting stock problem the perfect example for applying the

technique of column generation, which was invented by Ford and Fulkerson

(1958) and Gilmore and Gomory (1961, 1963).

In our problem on the other hand, the constraints that a set of values

(a1, . . . , aT ) must satisfy such that it constitutes a feasible cutting pattern

are unknown. We infer these constraints by looking at the data, which give

the average (over all mother plants) number of cuttings that were harvested

per week in the years 2006-2015.

3 Data mining

Data mining is used to retrieve relations from the data. There is a large

interaction between data mining and operations research, but it is mainly

a one way connection: techniques and algorithms from operations research

are applied in data mining (see Olafsson, Li, and Wu, 2008). We want to

apply data mining to find constraints that will be incorporated in the model

explicitly, after which we can apply the techniques from operations research.

As far as we know, such an approach has not been conducted before. For

example, Li and Olafsson (2005) who use data mining to derive dispatching

rules for a complex production scheduling problem, state that the idea of

this data mining approach to production scheduling is to complement more

traditional operations research approaches.

The domain expert at Dümmen Orange gave several indications on what

constitutes a feasible cutting pattern. For instance, for the variety that we

consider one can obtain a maximum of 2.0 cuttings per mother plant in a
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given week; hence, we find the constraint that at ≤ 2.0 for all t = 1, . . . , T .

After having harvested the maximum of 2.0 cuttings in week t, the mother

plants have to recover, which can be formulated in the constraint that at +

at+1 ≤ 3.9 for all t = 1, . . . , T − 1. Furthermore, a pattern that alternates

between cutting near the maximum and not cutting very much (e.g. a

pattern such as {2.0; 1.4; 2.0; 1.4, . . .}) is not feasible either; it turned out

later that any cutting pattern must satisfy the constraint at +at+2 +at+4 ≤
5.71 to be feasible.

It is apparent that the number of constraints required may be large,

and a different set of values is needed for every variety. Obtaining these

values from domain experts would be very time consuming (and it is unclear

whether such detailed knowledge is available), and hence we need to define

a process to automate it. Thereto, Dümmen Orange provided us with data

specifying the average number of cuttings harvested per mother plant in

the period 2006-2015. We applied a very primitive form of data mining to

derive the constraints; recall that we have no more than 10T numbers in

our excel file, in contrast to the gigabytes of data that are standard in data

mining. Together with the domain expert, we decided that the presumably

relevant constraints will be of the form at1 + at2 + . . . + atk ≤ X, where

t1, . . . , tk ∈ {1, . . . , T} and t1 < t2 < . . . < tk. To find these constraints,

we simply enumerated all possibilities with k = 1, . . . , 6 and tk − t1 ≤ 10,

and computed for each constraint the right hand side value X equal to the

maximum value that is observed in the historical data for the expression on

the left hand side.

Even though the bound of each constraint is set to the maximum value

observed, the fact that very many such constraints work together ensures

that only realistic cutting patterns will satisfy the constraints. The domain

expert confirmed that the cutting patterns that we identified in this way

appeared feasible. Instead of taking the maximum it is also possible to use

a bit more conservative constraints by putting X equal to the k-th percentile
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instead of the maximum of the observed values, especially if in the future a

larger training data set may become available.

Another possible shortcoming of our data mining model might be that

we do not have the data available that we need. We used the data concerning

the number of cuttings that were actually harvested instead of the maximum

number of cuttings that could have been harvested (which data are not

available). Hence, the constraints that were inferred might be too restrictive:

it might not consider a certain feasible cutting pattern, simply because this

cutting pattern has not been used before. We leave these issues to the

experts, who if necessary can perform some experiments to test cutting

patterns.

Below, we have listed a small excerpt of the list of constraints that we

obtained using data mining.

at ≤ 2.0

at + at+1 ≤ 3.9

at + at+2 ≤ 3.85

at + at+1 + at+2 ≤ 5.75

at + at+2 + at+4 ≤ 5.71

at + at+1 + at+2 + at+3 ≤ 7.6

at + at+1 + at+3 + at+4 ≤ 7.61

at + at+1 + at+2 + at+3 + at+4 ≤ 9.46

at + at+1 + at+3 + at+4 + at+5 ≤ 9.21

at + at+1 + at+2 + at+3 + at+4 + at+5 ≤ 11.15

at + at+1 + at+3 + at+4 + at+5 + at+6 ≤ 10.9

4 Determining the minimum number of mother

plants

Now that we have a description of the feasibility constraints, we can solve

the linear programming formulation to decide on the number of mother
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plants that we need. Since the number of feasible cutting patterns is much

too large to enumerate, it seems inevitable to use column generation, just

like for the cutting stock problem. If we solve the LP for a limited number

of cutting patterns, then we find a shadow price πt (t = 1, . . . , T ) for each

week constraint. Hence, the reduced cost of a cutting pattern described by

(a1, . . . , aT ) is equal to

1−
T∑
t=1

atπt,

and this must be minimized subject to the feasibility constraints. Since these

feasibility constraints are linear, the resulting pricing problem is a linear pro-

gramming problem, and hence can be solved very efficiently. But it turns

out that we do not need the technique of column generation at all. Since

the feasible region described by the constraints is convex, we have that each

convex combination of a set of cutting patterns satisfies these constraints,

and hence corresponds to a feasible cutting pattern again. This observation

leads to the following result.

Theorem 4.1. Let x∗ = (x∗1, . . . , x
∗
n) denote an optimal solution to the

linear program of minimizing the required number of mother plants. Then

there exists an equivalent solution in which we use only one cutting pattern

C = (C1, . . . , CT ).

Proof. Define M =
∑n

j=1 x
∗
j . We construct this cutting pattern C by

taking the weighted average of all cutting patterns, where we use x∗j/M as

our weight function, for j = 1, . . . , n. Hence, we have that

Ct =
n∑

j=1

ajtx
∗
j/M.

Since all weights are non-negative and add up to 1, this is a convex combi-

nation, and therefore C is a feasible cutting pattern. If we cut all M mother

plants according to this cutting pattern, we get the same yield as we get for
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the optimal solution x∗.

Since we want to produce bt cuttings in period t (t = 1, . . . , T ), it is optimal

to use the cutting pattern C = (C1, . . . , CT ), where Ct = bt/M , and we

determine M as the smallest number such that (b1/M, . . . , bT /M) satisfies

all constraints identified using data mining. Our first idea was to determine

this value M using binary search, but there is an even simpler method.

Recall that we have to check whether the values at = bt/M (t = 1, . . . , T )

satisfy the constraints, such as at+at+1 ≤ 3.9. This is equivalent to checking

whether Mat + Mat+1 = bt + bt+1 ≤ 3.9M , which implies that M must be

greater than or equal to (bt+bt+1)/3.9. For each one of feasibility constraints

we can obtain a lower bound on M in this way, from which we find that

the minimum number of mother plants required is equal to the maximum

of these lower bounds.

Note that this approach works only if we can guarantee that a convex

combination of a set of cutting patterns is feasible. If we would need addi-

tional non-linear constraints to describe a feasible cutting pattern, then we

have to resort to column generation again. The pricing problem would then

not be solvable as an LP any more, but we could apply an approach such as

Constraint Programming instead.

5 Determining how many cuttings to offer for sale

The solution approach yields a lower bound M on the number of mother

plants that must be planted, but even if exactly M mother plants are

planted, then in a number of periods more cuttings will be available than

ordered. The exact surplus per week depends on the applied cutting pat-

tern, and we can optimize this as well, given that we know for each week t

(t = 1, . . . , T ) how many cuttings we can sell additionally (which we denote

by Dt) and the profit pt that we gain per cutting sold additionally. Sup-

pose that the management of Dümmen Orange has decided on the number
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Q of mother plants to be planted; this can be any given value, as long as

Q ≥M . We can then solve the problem of determining how many cuttings

extra to offer for sale per week in a similar fashion by formulating it as an

LP again. Next to the decision variables xj , we introduce decision variables

yt (t = 1, . . . , T ) that will indicate the number of additional cuttings to be

sold in period t. Just like we did for xj , we ignore the integrality of the yt

variables. We then get the following LP formulation:

max
∑

t ptyt

subject to∑n
j=1 ajtxj − yt ≥ bt ∀t = 1, . . . , T∑n

j=1 xj ≤ Q
0 ≤ yt ≤ Dt ∀t = 1, . . . , T

xj ≥ 0 ∀j = 1, . . . , n

We can use Theorem 4.1 again to show that we can use a single cutting

pattern C. As a consequence, we can once again solve this problem without

generating cutting patterns. We introduce the variables zt that indicate the

number of cuttings that we harvest in period t (t = 1, . . . , T ); we must have

that zt ≥ bt and we sell the remainder zt − bt at a price of pt per cutting.

Since we use a single cutting pattern, we cut at = zt/Q cuttings per mother

plant. Then we can rewrite the LP as

max
∑

t pt(zt − bt)

subject to

bt ≤ zt ≤ bt +Dt ∀t
zt = Mat ∀t

‘the variables at form a feasible cutting pattern’

IfQ is a decision variable as well, then the constraints zt = Qat are not linear,

but we can rewrite the above formulation to obtain a linear program again

by eliminating the at variables. To that end, we multiply the constraints
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describing the cutting patterns, for example at + at+2 ≤ 3.85, by Q, such

that we obtain the constraint zt + zt+2 ≤ 3.85Q. Obviously, we have to

include the cost of growing Q mother plants in the objective function. We

further remark that our approach can also be used in case we refine the

model by offering the possibility of selling up to bt,1 cuttings for price pt,1,

up to bt,2 cuttings for price pt,2, etc.

6 Computational experiments

To make our mathematical formulation more tangible for the domain ex-

perts, we have created a graphical user interface around the LP formula-

tion, which allows the user to enter a set of training data (note that we used

the historic data to that avail), and then experiment with various scenarios.

The user can specify a number of mother plants and the (predicted) demand

levels for each week, and then see whether the demands can be met given

this number of mother plants, and how much (if any) additional capacity

there is in each week. The software can also calculate the minimum number

of mother plants required to meet a specific set of demands.

Figure 1: GUI for the planting stage.
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The red line shows the demands entered by the user, while the green

line shows the maximum number of cuttings we could take each week, while

still being able to meet the demands. The gray line shows the absolute

maximum number of cuttings available in a single week, but note that it is

never feasible to take this many cuttings, except for in the last week (when

the demand has dropped to zero).

We also implemented an interface for the harvesting stage, which aids

in determining how many additional cuttings to offer for sale (on top of the

amounts that have already been (pre-)ordered). This is depicted in Figure

2. For each week, the user can enter how many cuttings have been ordered

so far, as well as (an estimate of) the number of cuttings for which there is

additional demand. Additionally, the user can enter (for each week) a profit

for each additional cutting sold, and a penalty for not delivering cuttings

that have already been ordered. Given these values, the program calculates

an optimal strategy for selling the additional cuttings.

The red and green lines have the same meaning as before, while the blue

line represents our program’s advice on selling additional cuttings.

We found that this implementation was a quite powerful tool for con-

veying our mathematical model to the domain experts.

Figure 2: GUI for the selling stage.
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7 Conclusions

The problem of Dümmen Orange is quite different from other applications

because of the laws of nature that have to be obeyed: the output is not

constant, but decreases over time if you require too much in the beginning.

We have attacked this problem by linear programming, where we use a

simple form of data mining to cover the lack of constraints describing the

feasibility of the cutting patterns. Especially this latter part seems to be

new and very useful for dealing with these kinds of problems. The linear

programs are very flexible and easily solvable, which offers great potential

for future use by Dümmen Orange, especially when looking at combinations

of varieties. If more data become available then these LPs make it easy to

apply sensitivity analysis.
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