
On a Synergy Between Data and Processes

Jan Martijn E.M. van der Werf

Artem Polyvyanyy

Sietse Overbeek

Rick Brouwers

Technical Report UU-CS-2018-004

May 2018

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

On a Synergy Between Data and Processes

Jan Martijn E.M. van der Werf ∗ Artem Polyvyanyy †

Sietse Overbeek ‡ Rick Brouwers §

May 29, 2018

Abstract

The structure of data and processes to manage information are both important
aspects of information systems. Nevertheless, most existing modeling languages
focus either on one or the other. Languages that focus on data often neglect that
data is manipulated by processes, while languages tailored for processes ignore the
structure of the data.

In this paper, we present an approach to model and analyze information sys-
tems that combines data models with process models by means of an automated
theorem prover. In the proposed approach, data models are used to express the
structure and constraints of data, while Petri nets with identifiers define the pro-
cesses together with a specification on how transitions manipulate the data. Through
the use of an automated theorem prover, a transition is checked whether its manip-
ulation is valid given the constraints imposed by the data model. Our approach
allows specifying an information system over a spectrum of balances between data
and process constraints. This spectrum is exemplified with an educational institute
as a running example. The approach is supported with a proof-of-concept imple-
mentation using CPN-tools and the automated theorem prover E.

1 Introduction
Finding the right balance between data and process constraints is essential when de-
signing an information system. However, existing modeling languages often focus on
one of the two aspects, leaving the other to play the second fiddle. Many data modeling
notations introduce concepts to model and verify domain constraints, but neglect that
information is populated through processes. Similarly, process-oriented languages, like
BPMN [6], contain dedicated constructs to represent data, e.g., documents and mes-
sages, and data flows connecting these to the activities. But, these constructs are often
of little help when specifying some non-trivial constraints imposed by the domain.
∗Utrecht University, The Netherlands j.m.e.m.vanderwerf@uu.nl
†The University of Melbourne, Australia, artem.polyvyanyy@unimelb.edu.au
‡Utrecht University, The Netherlands s.j.overbeek@uu.nl
§Utrecht University, The Netherlands r.a.c.m.brouwers@students.uu.nl

1

Similar symptoms are observed when it comes to model analysis, as hardly any
analysis technique is grounded in both data and processes. A classical property in
process analysis is soundness [1]. For a sound process model it is guaranteed, for
example, that it is always possible to complete every started process instance, and there
are no pending activities once a process instance completes. A classical property in data
analysis is consistency, which states that no manipulation on a data population should
violate the constraints set by the model. These two properties together demonstrate
the need for a synergy between data and processes, as processes of an information
system should be sound and all the data manipulations caused by the processes should
be consistent.

When it comes to modeling an information system, some constraints are better
suited for capturing in a process model, whereas the others fit better in the data model.
For example, based on a given balance, different technological choices can be made. If
most constraints of the system are data-driven, an active database [16] would be a good
choice for the underlying technology, whereas if most constraints are process-driven,
one can opt for a Business Process Management System (BPMS) as an underlying
technology. Making a well-informed decision, requires the balance between data and
process constraints to be explicit.

Several approaches aim to exploit the synergy between processes and data. For
example, Colored Petri nets (CPN) can be used to encode cases [8], but adding data in
general breaks analysis. Other approaches introduce a formal notation for identifiers
that can be utilized to identify business cases, e.g., ν-PN [18,19]. An extension on this
class, are DB-nets [15], which utilizing CPN to encode the link between processes and
the underlying data layer.

In practice, most BPMSs, like Bizagi BPM, Bonita BPM and Process Maker 1

follow a different strategy. Instead of relying on a single formalism, processes are
modeled in BPMN, and, independently, a data model is developed in a data modeling
environment. To connect the processes to the data, processes are attributed with process
variables, and activities manipulate these variables and the populated data model using
forms, basically following the approach as presented in [11]. In this paper, we follow a
similar line of thought. We consider an information system to consist of three artifacts:
1) a data model for capturing the domain and its constraints; 2) a process model based
on Petri nets with identifiers [12]; and 3) a specification defining the data manipulations
by the activities.
Concretely, this paper makes these three contributions:

1. Proposes an approach for balancing data and process constraints in a model of an
information system, and discusses consequences of balancing these constraints;

2. Demonstrates that the proposed approach for modeling information systems re-
mains decidable and, thus, analysis is still possible; and

3. Presents a proof-of-concept implementation of the proposed approach based on
CPN-tools and automated theorem prover E, which shows the feasibility of the
proposed approach.

In the paper, a running example will be used to explicate the proposed concepts.
1see: http://www.bizagi.com, http://bonitasoft.com/, and http://www.

processmaker.com/

2

Running Example. The educational institute “Private Teaching Institute” (PTI) offers
different education tracks, such as information sciences. PTI consists of a small team
per track, called the track management, and a small student administration for all tracks
together. For each track, different courses can be followed. Every person is entitled
to register for a track. Once registered, and accepted by the track management, they
become a student of that track. Students accepted for the track have to create a study
plan, consisting of the courses they want to follow. This plan has to be approved by the
track management. Students enrol for courses. A student of a track is allowed to follow
up to two courses concurrently. A lecturer decides whether a student fails or passes a
course. In case a student fails, she is allowed to retake, until she passes the course.
Once the student passed all courses approved upon in the study plan, the student can
request a diploma for that track. The track management verifies the certificates and the
plan, after which they award the diploma.
The remainder of this paper is structured as follows. The next section presents a for-
malism for capturing data models, instantiations of data models into populations, and
principles for manipulating populations of data models. Section 3 introduces Petri nets
with identifiers as an example of a process-oriented modeling language. An approach
for achieving a synergy between process and data models is proposed in Section 4.
This section also demonstrates how the proposed approach allows balancing between
data and process constrains in specifications of information systems, and discusses
its proof-of-concept implementation. The paper closes with conclusions. Finally, the
mathematical notations used in this paper can be found in Appendix A.

2 Data Models
Many languages are available for modeling data, in which concepts are represented
together with relationships between these concepts and additional constraints on the
data model. Noteworthy examples of such languages are class diagrams in the Uni-
fied modeling Language (UML) [7], the Entity-Relationship (ER) language [4], and
the Object-Role modeling (ORM) language [9]. When viewing these three data mod-
eling languages altogether it can be concluded that different terminology and graphical
notations are used for comparable modeling constructs.

Remarkable differences in the way how constraints are expressed in each of these
modeling languages include, e.g., the possibility to express constraints in UML class
diagrams by means of the technical Object Constraint Language (OCL) 2 to realize
machine-readable data model constraints. The Semantics Of Business Vocabulary And
Rules (SBVR) language 3 enables to generate natural language expressions of con-
straints that are part of an ORM model. The underlying idea of this constraint language
is to generate a human-readable verbalization of an ORM model. This verbalization
can on its turn be interpreted and validated against a specific universe of discourse of
which the ORM model is an abstraction.

2see: http://www.omg.org/spec/OCL/2.2/PDF/
3see: http://www.omg.org/spec/SBVR/1.0/PDF/

3

Track (.ID)

Person

(.ID)

enrols
accepts

Administrator

rejects

 Student

registers

 Registrant

awarded
exam

registered
exam

Manager

approves
exam of

StudyPlan

(.ID)

is of

a
p
p
ro
v
e
s

v
a
li
d
a
te
s

follows

 Enrolment

Course

(.ID)

c
o
n
ta
in
s

Lecturer

passes

fails

c1

c2

c3

c4

c5

c6

DateTime

Figure 1: A data model of the running example in ORM notation.

2.1 A Formalization with Set Theory and First-Order Logic
Each of the aforementioned formalisms focuses on different aspects of modeling data.
Each formalism comes with its constructs and ways to express constraints. Yet, all
these notations are similar in that they are founded in set theory, relational algebra and
first-order logic [4, 5]. We do not advocate for the use of specific notations, but rather
focus on the underlying principles that drive them. For a given situation, a data model
describes all allowed populations, i.e., conditions that must be satisfied by a population.
A population consists of entities (with attributes), and relations between the entities.
Based on the relational model of Codd [5], entities and relations are represented using
set theory [4]. This forms the basis of our data model definition. Therefore, a data
model consists of a set of possible entity types, and labels for entity types and relations,
which are characterized by finite sequences of entity types.

Let I denote the universe, i.e., a countably infinite set, of identifiers, and Λ the
universe of labels, which are disjoint.

Definition 2.1 (Data model). A data model is a 4-tuple (T,R, ρ,Ψ), where:
◦ T ⊆ P(I) is a finite set of entity types,
◦ R ⊆ Λ is a finite set of relation types,
◦ ρ : R→ T ∗ is a relation definition function that maps every relation type onto a

finite sequence of entity types for which it holds that for every t ∈ T there exists
r ∈ R, called the entity relation of t, such that ρ(r) = 〈t〉, and

◦ Ψ is a collection of constraints defined as a formal theory of the first-order logic
statements over a collection of predicates that for every r ∈ R contains a predi-
cate with the domain

∏|ρ(r)|
i=1 ρ(r)(i). y

A data model of our running example captured using the Object-Role modeling (ORM)
notation [9] is shown in Fig. 1. One can use basic types, such as Integer, String
and Date, or distinguish domain specific types, such as Person, Track, and Course.
In the figure, boxes with rounded corners denote entity types, for example Manager
and DateTime. Rectangles stand for relations (or facts using the ORM terminology).
For example, “contains” is a binary relation between StudyPlans and Courses,
identified by StudyPlanIDs and CourseIDs, respectively (thus, the “.ID” no-
tation). Note that “approves exam of ” is a ternary relation, as each “Student” is

4

ρ(registers) = 〈Person, Track〉

ρ(rejects) = 〈Administrator, DateTime, Person, Track〉

ρ(accepts) =

〈Administrator, DateTime, Person, Track〉

ρ(enrols) = 〈Person, Track〉

ρ(isOf) = 〈StudyPlan, Person, Track〉

ρ(contains) = 〈StudyPlan, Course〉

ρ(approves) = 〈Manager, StudyPlan〉

ρ(follows) = 〈Person, Track, Course〉

ρ(fails) = 〈Person, Track, Course, Lecturer〉

ρ(passes) = 〈Person, Track, Course, Lecturer〉

ρ(registeredExam) = 〈Person, Track〉

ρ(validates) = 〈Manager, StudyPlan〉

ρ(approvesExamOf) = 〈Manager, Person, Track〉

ρ(awardedExam) = 〈Person, Track〉

Figure 2: A relation definition function.

identified by a pair composed of a Person and Track. For more information on
ORM, please refer to [9].

Each entity type and relation type of a data model is identified by a label and a
corresponding sequence of entity types. For example, the entity type Person is char-
acterized by the entity relation Person and the sequence of entity types ρ(Person) =
〈Person〉. To indicate that a person can enroll into a track, one can define relation
‘enrols’ such that ρ(enrols) = 〈Person,Track〉. We shall employ the notation in
which labels that stand for entity relations are capitalized and those that stand for the
other relations start with lowercase. Fig. 2 gives the relation definition function of the
running example (without the entity relations).

A data model may contain various constraints. The constraints are captured as the
first-order logic statements that define the formal theory of the data model. Based on
the structure, one can distinguish various classes of constraints. Fig. 1 depicts some
constraints of the running example in ORM notation. Let (T,R, ρ,Ψ) be a data model.
Next, in the context of the running example, we discuss several classes of constraints
4.

An entity of one type can also belong to another type. This can be captured using a
subtype constraint. Given two entity typesX,Y ∈ T ,X is a subtype of Y if and only if
∀x ∈ I : x ∈ X ⇒ x ∈ Y . In Fig. 1, arrows c1, c2, and c3 capture subset constraints.
For example, c1 specifies that ∀x ∈ I : x ∈ Administrator ⇒ x ∈ Person . Note
that the running example permits a person at the same time to be an administrator, a
manager, and a lecturer.

Every tuple in a relation is unique, i.e., it occurs at most once in the relation. Some-
times one needs to specify that a combination of a subset of elements in a tuple of a
relation is unique. This can be done by means of a uniqueness constraint. For example,
the constraint ∀x, y, z ∈ I : ((x, z) ∈ r ∧ (y, z) ∈ r)⇒ x = y specifies that there are
no two tuples in binary relation r with identical first elements. In Fig. 1, interval c4 de-
notes the constraint ∀x, y, z ∈ I : ((z, x) ∈ approves ∧ (z, y) ∈ approves)⇒ x = y.
Uniqueness constraints can spawn multiple elements. Interval c5 specifies constraint
∀x, y, z, u, v ∈ I : ((x, z, u, v) ∈ accepts ∧ (y, z, u, v) ∈ accepts) ⇒ x = y, i.e.,
each combination of the last three elements of a tuple in accepts is unique.

It may be required that a relation, i.e., all its tuples, “participate” in another relation.
This can be expressed by means of a mandatory constraint. For example, mandatory

4Material for the running example can be found at http://www.architecturemining/tools/
DPS.

5

constraint ∀x, y ∈ I ∃ z ∈ I : (x, y) ∈ r ⇒ (x, y, z) ∈ s specifies that for every
pair (x, y) in relation r it holds that there exists a triple (x, y, z), z ∈ I, in relation s,
i.e., it is mandatory for r to participate in the first two positions in s. Thus, constraint
c6, which is the only mandatory constraint in Fig. 1 denoted by a small filled circle,
specifies ∀x, y ∈ I ∃u, v ∈ I : (x, y) ∈ enrols ⇒ (u, v, x, y) ∈ accepts , i.e., every
pair in enrols must appear at positions three and four of some 4-tuple in accepts.

In general, one can specify data model constraints using arbitrary first-order logic
expressions. Thus, constraints, in general, may not have the corresponding graphical
notation in standard data modeling notations. For example, one can specify that ad-
ministrators do not cheat using the expression ∀x, y, z ∈ I : (x, y, x, z) 6∈ accepts ,
i.e., an administrator cannot accept herself for a track.

The reader familiar with ORM will notice that in Fig. 1 we use ORM for our
purpose of encoding the data model of Def. 2.1 of the running example. This is
done to allow traceability between visual notation and the formalism. In classical
ORM, the running example can be captured slightly differently, e.g., nested Student,
Enrolment, and Registrant types would normally be captured as entity types
with the compound reference schemes (also called objectified fact types), while DateTime
would be modeled as a value type.

2.2 Data Model Populations
A data model can be instantiated with entities and relations, called facts, which define
its population. Every population is typed, i.e., every relation obeys its definition given
by the relation definition function. A population may invalidate the constraints. Thus,
we say that a population is valid if it satisfies all the constraints of the data model;
otherwise the population is invalid.

Definition 2.2 (Population).
A population of a data model (T,R, ρ,Ψ) is a function π : R → P(

⋃
n∈N In) such

that every element in the population is correctly typed, i.e., for every r ∈ R it holds
that π(r) ∈ P(

∏|ρ(r)|
i=1 ρ(r)(i)). Given a relation r, an element v ∈ π(r) is called a fact.

y

If a population satisfies the constraints set by the data model, it is called valid, denoted
by π |= Ψ; otherwise it is invalid, denoted by π 6|= Ψ. Given a data model D, by Π(D)
and Λ(D) we denote the set of all possible populations of D and the set of all possible
valid populations of D, respectively.

Consider again the data model of Fig. 1 and its relation definition function in
Fig. 2. A valid population is: Track(IS), Course(PM), Course(DM), Course(PR), Per-
son(1012), Administrator(1012), Person(520639), registers(520639, IS), enrols(520639, IS),
accepts(1012, 15-03-18 19:01, 520639, IS), StudyPlan(SP98), isOf (SP98, 520639, IS),
contains(SP98, PM), contains(SP98, PR). In this population, there is a track Informa-
tion Sciences (IS), and three courses: Data modeling (DM), Process modeling (PM),
and Programming (PR). The population specifies one administrator (Alice) with per-
sonnel number 1012, one student (Robin) of the IS track with student number 520639,
who was accepted by Alice, and is currently creating a study plan, containing the
courses PM and PR. As this population satisfies all the constraints, it is valid.

6

2.3 Manipulations with Populations
The population of an information system changes frequently, entities and facts are
added to, deleted from, or updated in populations. To this end, we define two op-
erations for manipulating populations: inserting entities into a relation and removing
entities from a relation. Note that an update can be implemented as a transaction of
first deleting and then inserting certain entities.

Definition 2.3 (Transaction).
Let D = (T,R, ρ,Ψ) be a data model, let r ∈ R be a relation, let v ∈

∏|ρ(r)|
i=1 ρ(r)(i)

be a tuple, called a fact, and let π ∈ Π(D) be a population.
◦ Population π′ ∈ Π(D) is the result of inserting fact v into r in π, denoted by

(D : π
r⊕v−→ π′), if and only if π′ = (π \ {(r, π(r))}) ∪ {(r, π(r) ∪ {v})}.

◦ Population π′ ∈ Π(D) is the result of deleting fact v from r in π, denoted by
(D : π

r	v−→ π′), if and only if π′ = (π \ {(r, π(r))}) ∪ {(r, π(r) \ {v})}.
A transaction is a finite sequence composed of the above two operations such that
every subsequent operation is performed in a population that results from the previous
operation. It is called valid iff the starting and final resulting populations are valid. y

When the context is clear, i.e., the scope of the data model and its current population
are known, we write insert(r, v) and delete(r, v) instead of (D : π

r⊕v−→ π′) and
(D : π

r	v−→ π′), respectively.
As Robin is working on her study plan, refer to the population proposed at the end

of Section 2.2, updating the course Programming to Data modeling in her study plan
can be implemented using this transaction:

delete(contains, (SP98,PR));
insert(contains, (SP98,DM));

As the initial population is valid, and the result of executing the transaction will not
violate any constraint, the above transaction is valid.

3 Process Models
Process models mainly focus on the control flow aspects of processes. Classical Petri
nets, in the form of workflow models represent processes with a clear start and finish.
An important correctness property is soundness [1]: a workflow model is sound if the
model is 1) weakly terminating, i.e., it is always possible to reach a marking in which
only the final place is marked, and 2) properly completing, i.e., once the final place
receives a token, there are no other tokens pending in the net.

In general, many different cases may be active concurrently. Generalized sound-
ness [1] extends soundness by strengthening the weak termination property: if the net
starts with some number of tokens in the initial place, the marking in which all these
tokens have been transferred to the final place should be reachable.

The net in Fig. 3 is a generalized sound workflow, if one ignores transitions start
and archive, the yellow-colored places education track, administrator, course, man-
ager and lecturer, and the arc inscriptions (i.e., the net starting at place i, and finishing

7

register

reject

student

accept

student

create
studyplan

reject plan

accept plan

register course

unregister

pass

course

fail course

register

exam

reject exam

accept

exam

award exam

add course

remove

course

alter plan

education
track

administrator

max
concurrent

courses

course

manager

(s,t)
t

(s,t)

a

(s,t)

(s,t)

(s,t) (s,t,p)

(s,t,p)

a

(s,t,p) (s,t,p)

(s,t,c)

2'(s,t)

c

(s,t,c)

(s,t,c)

l

l

(s,t)

(s,t)(s,t,p)

(s,t,p)

(s,t,p)

(s,t,p)

(s,t)

(s,t)

m
m

(s,t,p)

(s,t,p)(s,t,p)

(s,t,p)
(s,t,p)

(s,t,p)

c

c

(s,t,p)(s,t,p)

(s,t,p)

m

m

m

m

m
m

l

l
c

c

c

i

a

a

archive

(s,t)

(s,t)

(s,t)

start

f

lecturer

t

s

s

a

c
d

e

b

Figure 3: PNID of the process a student follows at PTI.

in place f). Starting with two tokens in place i, the model eventually marks place
max concurrent places with four tokens. Now, each student starts following a course,
i.e., firing register twice. As two tokens remain in place max concurrent places, transi-
tion register exam remains enabled. However, if considering the students in isolation,
this transition would not have been enabled. Hence, classical Petri nets give an over-
approximation of the possible transition firings.

Different approaches exist to represent cases in Petri nets. For example, cases can
be encoded in colored Petri nets (CPN), as done in e.g., [8]. However adding data in
general breaks soundness: models that are sound without considering data can become
unsound, and vice versa. Another approach is followed in the class of ν-PN, in which
tokens carry an identifier. A marking then maps each place to a bag of identifiers,
indicating how many tokens in each place carry the same identifier.

In this paper, we extend the idea of tokens carrying identifiers to vectors of identi-
fiers. In our extension, Petri nets with identifiers (PNID) [12], each token represents a
vector of identifiers. Each arc is labeled with a vector of variables. Similar to ν-PN,
a mode instantiates the variables to an identifier. Vectors of identifiers have the ad-
vantage that a single token can represent multiple objects or entities at the same time.
Each place in a PNID has a cardinality, defining the size of the identifier vectors to-
kens carry in that place. Tokens carrying vectors of size 0 represent classical – black –
tokens. Arcs are labeled with vectors of variables. The size of the vector on the arc is
implied by the cardinality of the place it is connected to.

8

3.1 Formalization of PNIDs
Recall that I denotes the countably infinite set of identifiers. Places have a cardinality,
defining the color C(p) of each place p. Arcs are labelled with a variable vector over
the non-empty set of variables Σ.

Definition 3.1 (Petri net with identifiers).
A Petri net with identifiers (PNID) N is a 5-tuple (P, T, F, α, β), where:

1. (P, T, F) is a Petri net;
2. α : P → N defines the cardinality of a place, i.e., the length of the vector of

identifiers carried on the tokens residing at that place;
3. β defines the variable vector for each arc, i.e., β ∈

∏
f∈F Vf , where V(p,t) =

V(t,p) = Σα(p) for p ∈ P, t ∈ T .
The color of a place p ∈ P is defined by C(p) = Iα(p). Given a transition t ∈ T ,
I(t) = {v | v ∈ Rng(β((p, t))), (p, t) ∈ F} denotes the set of input variables, and
O(t) = {v | v ∈ Rng(β((t, p))), (t, p) ∈ F} its set of output variables. The set of all
variables of t is defined by var(t) = I(t) ∪ O(t). The set of creator variables of t is
defined by new(t) = O(t) \ I(t). y

In a PNID, each token is represented by a vector of identifiers. Consequently, a marking
of a PNID is a bag over vectors of identifiers.

Definition 3.2 (Marking).
A marking of PNID N = (P, T, F, α, β) is an element m ∈

∏
p∈P NC(p). The pair

(N,m) is called a marked PNID. The function Id returns all the identifiers present in
marking m, i.e., Id(m) = {a ∈ I | ∃p∈P,v∈C(p) [a ∈ Rng(v) ∧m(p)(v) > 0]}. y

Consider again the net in Fig. 3. This net is a PNID. The first transition, start, cre-
ates a token with a single identifier, representing a person entering the institute. The
place education track contains all the tracks PTI offers. Firing transition register, mod-
els that the student chooses a track, t, and registers for that track. The result is a token
with two identifiers: one for the student, and one for the education track. As for the
data model in Fig. 1, a student is the combination of a person and a track. Next, the stu-
dent creates a study plan. As adding courses to the plan, requires information about the
plan, tokens in place c are the combination of a student (i.e., a person and a track), and
a plan. Tokens in place d resemble the student together with the approved plan. As for
counting the number of courses a student follows concurrently, the plan is not required,
place max concurrent courses only carries tokens representing the student. Similarly,
place e represents students following a course, and hence carries three identifiers: the
student (person and track), and the actual course.

The mode is a function that instantiates an identifier for each variable, such that no
two variables are instantiated to the same identifier. The mode chooses which tokens
are taken from the input places, and which tokens will be produced. A mode is called
a (t,m)-mode for a transition t and a marking m, if each creator variable receives a
fresh, new identifier, and all other variables of t are instantiated to identifiers present in
m. Each (t −m)-mode implies a binding, indicating which tokens are consumed and
produced. If all tokens to be consumed are present, the transition is enabled.

9

Definition 3.3 (Mode, binding, firing rule).
Let (N,m) be a marked PNID with N = (P, T, F, α, β), and let t ∈ T be a transition.

A mode is a function ν : Σ → I. It is called a (t,m)-mode iff ν(x) 6∈ Id(m) for
all x ∈ new(t), and in addition for all y ∈ var(t), if ν(x) = ν(y), then x = y. We lift
the mode to vectors, and sequences, by applying the mode on each of the constituents.
The set of all (t,m)-modes is denoted by V (t,m).

A binding for transition twith mode ν is a pair (q, r) ∈
∏
p∈•tNC(p)×

∏
p∈t• NC(p),

such that for p ∈ •t, q(p)(a) = F (p, t) iff a = ν(β((p, t))) and q(p)(a) = 0 otherwise,
and for p ∈ p•, r(p)(a) = F (t, p) iff a = ν(β((t, p))) and r(p)(a) = 0 otherwise.

If such a binding exists the transition is called enabled. An enabled transition may

fire, resulting in marking m′, denoted by (N : m
(t,ν)−→ m′), with m+ r = m′ + q. y

3.2 Expressiveness
Although PNIDs use vectors of identifiers, their expressive power is similar to the class
ν-PN. As a result, reachability is undecidable, whereas coverability, boundedness and
termination are decidable [18].

Theorem 3.4 (Expressiveness PNIDs).
PNIDs are bisimilar to ν-PN. y

Proof. (sketch) (⇒) Let (N,m) be a marked PNID, and k ∈ N be its largest cardinal-
ity. A bijection exists that maps each vector Il, for 0 ≤ l ≤ k to an identity in a new
universe I ′ (i.e., I ∩ I ′ = ∅). Similarly, a bijection g exists that maps variable vectors
in β to new variables, such that if β(f) = β(f ′), then g(f) = g(f ′). Then, the PNID is
simulated by the resulting ν-PN. (⇐) By definition, as any ν-PN is also a PNID.

One of the main reasons for the undecidability result of ν-PNs lies in the absence of
any structure in the identifiers. Consequently, each transition creating new variables
has in any marking m an infinite set of (t −m)-modes. In fact, providing a structure,
such as the natural numbers, reachability remains decidable, as there is always an upper
bound on the number of identifiers possible, as shown in [19]. A similar result holds
for PNIDs, cf. [22]. Although this translation always results in a classical Petri net, it
results in an exponential explosion of the resulting net, as each place is duplicated for
each possible token vector.

Theorem 3.5 (Reachability when utilizing natural numbers).
If the natural numbers are used as identities, i.e., I = N, together with a creation
strategy based on the total order implied by the natural numbers, then PNIDs are
bisimilar to classical Petri nets. y

Proof. (sketch) Create a counter place c that always contains the last identity being
created, and connect it to all transitions t with new(t) 6= ∅. The mode instantiates
variables such that always the next free variable is used, i.e., the next identifier from
the counter place. This way, the counter place always gives an upper bound to the iden-
tifiers ever created, and thus the resulting net can be transformed into a finite classical
Petri net [22].

10

add track remove track

add course remove course

add
administrator

remove
administrator

add manager remove
manager

add lecturer

remove
lecturer

education
track

course

administrator

manager

lecturer

t t

c c

a a

m m

l

l

Figure 4: PNID of the secondary processes at PTI.

insert(Person , (s))
insert(registers , (s, t))

insert(Person , (520639))
insert(registers , (IS, t))

Figure 5: Abstract transaction for register, and its instantiation with mode {s 7→
520639, t 7→ IS}.

4 Synergy of Data and Processes
In BPMSs such as Bizagi, Bonita BPM and ProcessMaker, creating an information sys-
tem consists of several intertwined steps, resulting in separate deliverables that together
form the system. These deliverables include a data model describing the domain and
data storage, a (set of) process models describing the information streams within the
organization, and a set of forms and services for each of the activities in the processes.

Based on the data model, each transition is specified with an abstract transaction
that describes how the transition manipulates the population. An abstract transaction
uses the same variable set as the Petri net. Similar to creating a binding for changing
the marking, the mode is used to calculate the transaction by instantiating the abstract
transaction with the same mode.

Definition 4.1 (Abstract transaction).
LetD = (T,R, ρ,Ψ) be a data model, and let Σ denote a nonempty set of variables. An
abstract transaction is a sequence of operations o ∈

(
R× {⊕,	} ×

⋃
n∈N (Σ ∪ I)

n)∗,
using both variables from Σ, as identifiers I. An abstract transaction o can be instanti-
ated using a mode ν : Σ→ I, denoted by ν(o), which results in a transaction. The set
of all abstract transactions for data model D is denoted by Σ(D). y

Consider the PNID depicted in Fig. 3. As shown in Fig. 5, transition register adds
two facts to denote a student registering for a track.

Starting with a valid population, a transaction specified by the transition should not
invalidate the population. Hence, we only allow transitions to fire in our model, if,
given some mode, both the transition is enabled, and its corresponding transaction is
valid in the current population. This forms the basis of our model of an Information
System. An information system consists of three elements: a data model, a PNID, and a
specification, which maps an abstract transaction to each of the transitions in the PNID.

11

Definition 4.2 (Information system, semantics).
An information system (IS) is a 3-tuple (D,N, S) withD = (T,R, ρ,Ψ) a data model,
N = (P, T, F, α, β) a PNID, and S : T → Σ(D) a specification. A state of an infor-
mation system is the pair (π,m), with π ∈ Π(D) a population, andm ∈

∏
p∈P NC(p) a

marking. Given markings m,m′ ∈
∏
p∈P NC(p) and valid populations π, π′ ∈ Λ(D),

transition t ∈ T with (t,m)-mode ν is enabled in state (m,π), iff (D : π
ν(S(t))−→ π′)

and (N : m
(t,ν)−→ m′). Its firing results in the new state (π′,m′), and is denoted by

((D,N) : (π,m)
(t,ν)−→ (π′,m′)). y

Typically, an organization has multiple processes. For example, for PTI we can have
different processes, e.g., the processes shown in Fig. 4. As the union of a set of Petri
nets is again a Petri net, the different processes for an information system can be divided
into separate models, which are then united into a single PNID. The yellow places
are the places that are in both PNIDs, and will be merged in the united PNID of the
information system.

4.1 A Spectrum of Information System Models
The semantics of an information system is based on two conditions: first, the transac-
tion specified by the transition should yield a valid population, and second, the tran-
sition should be enabled. It is not necessary that the former condition implies the
latter, or vice versa. For example, in Fig. 3, if transition register is enabled, its exe-
cution will always yield a valid population: adding a new fact for Person, and one
for registers is always allowed. Hence, the transition is process-driven: its en-
abledness in the PNID implies a valid transaction. The other way around, a student
is only allowed to create a single study plan. The transaction of create studyplan, is
only valid if the study plan is accepted, which is only the case if place b is marked.
Therefore, transition create studyplan is data-driven: always if its transaction is valid,
the transition is enabled in the PNID.

Definition 4.3 (Data-driven, process-driven information system).
Let (D,N, S) be an information system. Transition t ∈ T is:

◦ data-driven, if (D : π
ν(S(t))−→ π′) implies ((D,N) : (π,m)

ν(S(t))−→ (π′,m′))

◦ process-driven, if (N : m
(t,ν)−→ m′) implies ((D,N) : (π,m)

ν(S(t))−→ (π′,m′))

for all markings m,m′ ∈
∏
p∈P NC(p), (t,m)-mode ν and population π, π′ ∈ Λ(D).

If all transitions in the PNID are data-driven (process-driven), the information system
is fully data-driven (fully process-driven). y

Any of the transitions in Fig. 4 is data-driven: if executing its specification results in
a valid population, it is also enabled in the PNID. Hence, the net is fully data-driven.
Similarly, each of the ‘add’ transitions in the same PNID are process-driven: if it is
enabled in the PNID, executing its specification yields a valid population. However,
removing facts is not always possible, hence the PNID is not fully process-driven.

Transitions are not necessarily either data or process driven. For example, in Fig. 3,
transition register exam is directly enabled once the study plan has been accepted.

12

Population

CPN Tools DPS E Prover

Data ModelProcess Model IS Specification

S

RR

R

Figure 6: FMC Compositional Structure Diagram of the DPS prototype.

However, the constraints in the data model require a student to have finished all courses
specified in the study plan, before the student is entitled to register. Hence, although
the transition is enabled in the model (the latter condition), it does not yield a valid
transaction, and hence, the transition is not allowed to fire in the information system.

These examples show that any information system balances in a spectrum. One
extreme is a fully data-driven model, the other extreme is a fully process-driven model.
Notice that one model can be on both extremes at the same time, e.g., in a data model
with no constraints, an information system is both fully data-driven as well as fully
process-driven. Designers need to balance their models in this spectrum: some model-
ing requirements are better suited to be addressed in the process model, others in the
data model. Making the spectrum explicit, helps in selecting the appropriate technol-
ogy. For example, if most transitions are data-driven, an active database system [16]
would be the preferred choice, whereas if most transitions would be process-driven, a
BPMS would be the preferred option.

4.2 Expressiveness of Information Systems
Analysis remains an important aspect of the design of information systems. Notions
like soundness assist the designer in detecting errors in the specification. In balancing
data and processes, many potential errors are lurking. In our running example, a study
plan should contain courses in order to be valid. Adding this constraint to the data
model would break the process model: transition create studyplan would be dead, as
its transaction will always violate this constraint. Such mistakes are easy to make, but
difficult to trace. Hence, analyzability of the approach would assist in discovering such
errors, and in creating a better understanding of the model. Basing the PNIDs on the
natural numbers, and maintaining a mapping of each natural number to its entity type,
allows to create a decidable – yet expensive – model for information systems.

Theorem 4.4 (Reachability decidable).
Let (D,N, S) be an information system, and let I = N, using a creation strategy based
on the total order of N, Then reachability of (D,N, S) is decidable. y

Proof. (sketch) By Thm. 3.5, PNID N is bisimilar to some Petri net. Deciding a tran-
sition t to be enabled depends on decidability of checking validity of the transaction
S(t). As any population is finite, this is decidable.

13

4.3 Prototype Implementation
To show the applicability of our presented approach, we have implemented our ap-
proach in a prototype: DPS 5. Its architecture is depicted in Fig. 6 as an FMC Com-
positional Structure Diagram [13]. The PNID is translated into a CPN-model, and the
data model in a set of constraints for the automated theorem prover E [20]. DPS is
written in Java, and uses Access/CPN [23] to retrieve the enabled transitions and their
binding from the CPN-model. Next, DPS checks for each enabled transition whether
it is valid according to the E prover. For this, the constraints need to be specified in
the TPTP syntax [21]. The DPS applies the E Theorem Prover by checking validity
for every transition and binding individually. Internally, DPS maintains a current pop-
ulation, with an axiom for each of the facts in that population. Validating a transition
involves updating the axioms of the population, and running the E-prover for the new
population. If a transition is found to be valid, it is added to the list of valid and enabled
transitions within the current state. After checking all enabled transitions for validity, a
valid transition is chosen to be executed, either manually, or randomly chosen by DPS.

5 Conclusions
This paper proposed an approach to modeling an information system as a synergy of
data and processes, i.e., as an integration of a data and process model via a specifica-
tion on how transitions in the process manipulate the data population. A model of an
information system specifies that a transition can execute if it is enabled in the pro-
cess captured as a Petri net with identifiers, and the corresponding transaction yields a
valid population. This approach implies a spectrum of system specifications, from fully
data-driven, i.e., a transition is always enabled in the process when its corresponding
transaction is valid, to fully process-driven, i.e., if the transition is enabled in the PNID
it is allowed to execute. By making this spectrum explicit, designers have a great de-
gree of flexibility when capturing models of information systems. Once captured, the
model can aid in deciding on the best technology for implementing the system.

5.1 Related Work
Synergy between data and processes is a well-studied subject, both from the data and
process modelling communities. However, the balance between the two is typically left
implicit. For example, active databases have mechanisms in place that respond with
transactions based on events [16]. Although a process is implied, it is not modeled
expicitly. Verification of active databases is possible, e.g., with model checking on
termination [17].

In data modeling, different approaches consider process-related aspects. For ex-
ample, Data Flow Diagrams (DFDs) [24] depict which data elements flow through
an information system, defining the input and output relations of activities, but not the
order in which these activities can be performed. Consequently, formal analysis, such

5The material can be found at http://architecturemining.org/tools/DPS

14

as reachability and termination, of DFDs is not possible. Another approach is the Con-
ceptual Task Model [2], which is based on Petri nets and a similar notion to ORM.
Places are either task places, or information places. In this model, data and processes
are mingled, leaving the balance between the two implicit.

Other approaches focus more on the process aspects of information systems, leav-
ing constraints on the data model implicit. For example, DB-nets [15] extend ν-PN
with three layers: a persistence layer storing the data model, a data logic layer pro-
viding a bidirectional “interface”, and a control layer for the control flow. Places in
the Petri net may have a query that retrieves data from the database instance through
the data logic layer. Transitions in the control flow may have a guard on the data, and
actions to manipulate the population. Although DB-nets allow to specify a schema in
terms of entity types and relations, generic data constraints are not supported. Analysis
on the combination of processes and data together is limited to simulation, as the model
is richer than ν-PNs.

A different approach on process modelling for information systems is taken in [14],
which proposes coloured automata to represent global information about the state, and
local information about the states in individual process ordering constraints, expressed
in LTL. However, this approach only works in a compliance setting, when the colors
are known at runtime.

Our notion of an information system is closely related to Data-Centric Dynamic
Systems [3], in which a DCDS specification is maintained by a database manager and
the Flow engine, implemented in Java. The approach is similar to [11], in which the
Petri net editor Yasper is used with a database engine and a forms engine to create a
case handling system. However, both approaches mainly focus on implementing such
systems rather than on the design, including modeling and analysis.

5.2 Future Work
Making the balance between processes and data explicit empowers the designer. A
methodology is required to support the designer during the process of modeling an
information system. Constraints in one model typically affect the other model. Un-
derstanding this interplay is crucial to the design of a system. All the transactions of a
system need to be validated by an automated theorem prover before one is allowed to
execute. If one can prove that validity for an abstract transaction is invariant, this check
would not be necessary. This is closely related to proving semantic integrity [10].

Process-related properties such as depth-boundedness and width-boundedness [18]
in ν-PN may increase model understandability. To this end, better tool support is
needed to assist the designer in analyzing and modeling systems.

In addition, many constraints may be redundant, as they are implied by the other
constraints. Minimizing the number of constraints in a system will improve the perfor-
mance of analysis. Similar to the class of ν-PN, many interesting analysis techniques,
such as soundness, are undecidable for PNID. Similar to classical Petri nets, certain
subclasses pf PNID may guarantee soundness. Such subclasses remain an open re-
search question. Another idea is to derive construction rules that guarantee correctness
to support designers in specifying information systems that are correct by construction.

15

Despite several existing approaches for modeling information systems, more em-
pirical research is required to better understand the synergy between data and pro-
cesses, and the effectiveness of corresponding modeling and analysis techniques.

A Preliminaries
Let S be a, possibly infinite set. |S| denotes the number of elements in S. The powerset
of S is denoted by P(S) = {S′ | S′ ⊆ S}. Sets S and T are disjoint if S ∩ T = ∅.
A bag m over S is a function m : S → N, where N = {0, 1, 2, 3, . . .} denotes the set
of natural numbers. The set of all bags over S is denoted by NS . We use + for the
element-wise addition of two bags, and =, <, >, ≤, and ≥, for the comparison of two
bags, which are defined in the standard way.

The Cartesian product ofA andB is denoted byA×B = {(a, b) | a ∈ A, b ∈ B}.
The generalized Cartesian product for a set I and sets Ai, i ∈ I , is defined as:∏
i∈I Ai = {f : I →

⋃
i∈I Ai | ∀i ∈ I : f(i) ∈ Ai}. An element x ∈

∏
i∈I Ai

is called a vector. Given some n ∈ N, and set A, we write An for
∏

0≤i≤nA.
A sequence σ of length n ∈ N over some set S is a function σ : {1, . . . , n} → S.

If n > 0 and σ(i) = ai for i ∈ {1, . . . , n}, we write σ = 〈a1, . . . , an〉. The length of a
sequence σ is denoted by |σ|. The sequence of length 0 is called the empty sequence,
and is denoted by ε. The set of all finite sequences over S is denoted by S∗. We write
a ∈ σ if σ(i) = a for some 1 ≤ i ≤ n.

A Petri net N is a tuple N = (P, T, F) with P and T the finite sets of places and
transitions respectively, such that P ∩T = ∅, and F : ((P ×T)∪ (T ×P))→ N is the
flow relation. Places are drawn as circles, transitions as rectangles. If F (n,m) > 0, an
arc is drawn from n to m with weight F (n,m). An element a ∈ (P ∪ T) is called a
node. The preset of node a ∈ (P ∪ T) is a bag defined by •

N a = [bF (b,a) | (b, a) ∈
Dom(F)], and its postset is a bag defined by a•N = [bF (a,b) | (a, b) ∈ Dom(F)]. Given
two Petri netsN1 andN2, their union is the Petri netN1∪N2 = (P1∪P2, T1∪T2, F1∪
F2).

A marked Petri net is a tuple (N,m) where m ∈ NP is a marking. Transition
t ∈ T is enabled in (N,m), denoted by (N : m

t−→) iff •t ≤ m. An enabled
transition may fire, resulting in a new marking m′, denoted by (N : m

t−→ m′) with
m′ + •t = m+ t•.

References
[1] W.M.P. van der Aalst, K.M. van Hee, A.H.M. ter Hofstede, N. Sidorova, H.M.W.

Verbeek, M. Voorhoeve, and M.T. Wynn. Soundness of workflow nets: classifi-
cation, decidability, and analysis. Formal Aspects of Computing, 23(3):333–363,
2011.

[2] S. Brinkkemper and A.H.M. ter Hofstede. The conceptual task model: a speci-
fication technique between requirements engineering and program development.
In CAiSE, volume 436 of LNCS, pages 228–250. Springer, 1990.

16

[3] D. Calvanese, M. Montali, F. Patrizi, and A. Rivkin. Implementing data-centric
dynamic systems over a relational DBMS. In AMW 2015, volume 1378 of CEUR-
WS, 2015.

[4] P.P. Chen. The entity-relationship model: Towards a unified view of data. ACM
Transactions on Database Systems, 1:9–36, January 1976.

[5] E.F. Codd. A relational model of data for large shared data banks. Communica-
tions of the ACM, 13(6):377–387, 1970.

[6] M. Dumas, M. La Rosa, J. Mendling, and H. Reijers. Fundamentals of Business
Process Management. Springer, 2018.

[7] Object Management Group. OMG Unified Modeling Language (OMG UML),
Superstructure v2.3. Object Management Group, 2010.

[8] C.W. Günther and W.M.P. van der Aalst. Modeling the case handling principles
with Colored Petri nets. In Practical Use of Coloured Petri Nets, 2005.

[9] T. Halpin and T. Morgan. Information Modeling and Relational Databases. The
Morgan Kaufmann Series in Data Management Systems. Elsevier Science, 2010.

[10] M.M. Hammer and D.J. McLeod. Semantic integrity in a relational data base
system. In Proceedings of the 1st International Conference on Very Large Data
Bases. ACM, 1975.

[11] K.M. van Hee, J. Keiren, R.D.J. Post, N. Sidorova, and J.M.E.M. van der Werf.
Designing Case Handling Systems. ToPNoC, 5100, 2008.

[12] K.M. van Hee, N. Sidorova, M. Voorhoeve, and J.M.E.M. van der Werf. Gener-
ation of Database Transactions with Petri nets. Fundamenta Informatica, 93(1 –
3):171 – 184, 2009.

[13] Andreas Knopfel, Bernhard Grone, and Peter Tabeling. Fundamental Modeling
Concepts: Effective Communication of IT Systems. John Wiley & Sons, 2006.

[14] F.M. Maggi, M. Montali, M. Westergaard, and W.M.P. van der Aalst. Monitoring
business constraints with linear temporal logic: An approach based on colored
automata. In BPM, volume 6896 of LNCS, pages 132–147. Springer, 2011.

[15] M. Montali and A. Rivkin. DB-Nets: On the marriage of colored Petri nets and re-
lational databases. In Petri Nets, volume 10470 of LNCS, pages 91–118. Springer,
2017.

[16] N.W. Paton and O. Dı̀az. Active database systems. ACM Computing Surveys,
31(1), 1999.

[17] I. Ray and I. Ray. Detecting termination of active database rules using sym-
bolic model checking. In ADBIS 2001, volume 2151 of LNCS, pages 266–279.
Springer, 2001.

17

[18] F. Rosa-Velardo and D. de Frutos-Escrig. Decidability and complexity of Petri
nets with unordered data. Theoretical Computer Science, 412:4439–4451, 2011.

[19] F. Rosa-Velardo, O. Marroquı́n-Alonso, and D. de Frutos-Escrig. Mobile syn-
chronizing Petri nets: A choreographic approach for coordination in ubiquitous
systems. In MTCoord 2005, volume 150 of ENTCS, pages 103–126. Elsevier,
2006.

[20] S. Schulz. E – A brainiac theorem prover. AI Communications, 15(2,3):111–126,
2002.

[21] G. Sutcliffe, S. Schulz, K. Claessen, and A. van Gelder. Using the TPTP language
for writing derivations and finite interpretations. In Aut. Reason., volume 4130 of
LNCS. Springer, 2013.

[22] J.M.E.M. van der Werf. Compositional Design and Verification of Component
Based Information Systems. PhD thesis, Technische Universiteit Eindhoven,
2011.

[23] M. Westergaard and L.M. Kristensen. The access/CPN framework: A tool for
interacting with the CPN-tools simulator. In Petri Nets, volume 5606 of LNCS.
Springer, 2009.

[24] E. Yourdon. Data flow diagrams. In Just Enough Structured Analysis. 2006.

18

